80,758 research outputs found

    Resonating group method study of kaon-nucleon elastic scattering in the chiral SU(3) quark model

    Full text link
    The chiral SU(3) quark model is extended to include an antiquark in order to study the kaon-nucleon system. The model input parameters bub_u, mum_u, msm_s are taken to be the same as in our previous work which focused on the nucleon-nucleon and nucleon-hyperon interactions. The mass of the scalar meson σ\sigma is chosen to be 675 MeV and the mixing of σ0\sigma_0 and σ8\sigma_8 is considered. Using this model the kaon-nucleon SS and PP partial waves phase shifts of isospin I=0 and I=1 have been studied by solving a resonating group method (RGM) equation. The numerical results of S01S_{01}, S11S_{11}, P01P_{01}, P03P_{03}, and P11P_{11} partial waves are in good agreement with the experimental data while the phase shifts of P13P_{13} partial wave are a little bit too repulsive when the laboratory momentum of the kaon meson is greater than 500 MeV in this present calculation.Comment: 17 pages, 6 figures. Final version for publicatio

    Baryon-meson interactions in chiral quark model

    Full text link
    Using the resonating group method (RGM), we dynamically study the baryon-meson interactions in chiral quark model. Some interesting results are obtained: (1) The Sigma K state has an attractive interaction, which consequently results in a Sigma K quasibound state. When the channel coupling of Sigma K and Lambda K is considered, a sharp resonance appears between the thresholds of these two channels. (2) The interaction of Delta K state with isospin I=1 is attractive, which can make for a Delta K quasibound state. (3) When the coupling to the Lambda K* channel is considered, the N phi is found to be a quasibound state in the extended chiral SU(3) quark model with several MeV binding energy. (4) The calculated S-, P-, D-, and F-wave KN phase shifts achieve a considerable improvement in not only the signs but also the magnitudes in comparison with other's previous quark model study.Comment: 5 pages, 2 figures. Talk given at 3rd Asia Pacific Conference on Few-Body Problems in Physics (APFB05), Korat, Nakhon Ratchasima, Thailand, 26-30 Jul 200

    S, P, D, F wave KN phase shifts in the chiral SU(3) quark model

    Full text link
    The SS, PP, DD, FF wave KNKN phase shifts have been studied in the chiral SU(3) quark model by solving a resonating group method equation. The numerical results of different partial waves are in agreement with the experimental data except for the cases of P13P_{13} and D15D_{15}, which are less well described when the laboratory momentum of the kaon meson is greater than 400 MeV.Comment: Prepared for 10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2004), Beijing, China, 29 Aug - 4 Sep 200

    Transmission of Water Waves under Multiple Vertical Thin Plates

    Get PDF
    The transmission of water waves under vertical thin plates, e.g., offshore floating breakwaters, oscillating water column wave energy converters, and so on, is a crucial feature that dominates the hydrodynamic performance of marine devices. In this paper, the analytical solution to the transmission of water waves under multiple 2D vertical thin plates is firstly derived based on the linear potential theory. The influences of relevant parameters on the wave transmission are discussed, which include the number of plates, the draft of plates, the distance between plates and the water depth. The analytical results suggest that the transmission of progressive waves gradually weakens with the growth of the number and draft of plates, and under the conditions of given number and draft of plates, the distribution of plates has significant influence on the transmission of progressive waves. The results of this paper contribute to the understanding of the transmission of water waves under multiple vertical thin plates, as well as the suggestion on optimal design of complex marine devices, such as a floating breakwater with multiple plates

    Analysis of the strong coupling constant GDs∗DsϕG_{D_{s}^{*}D_{s}\phi} and the decay width of Ds∗→DsγD_{s}^{*}\rightarrow D_{s}\gamma with QCD sum rules

    Full text link
    In this article, we calculate the form factors and the coupling constant of the vertex Ds∗DsϕD_{s}^{*}D_{s}\phi using the three-point QCD sum rules. We consider the contributions of the vacuum condensates up to dimension 77 in the operator product expansion(OPE). And all possible off-shell cases are considered, ϕ\phi, DsD_{s} and Ds∗D_{s}^{*}, resulting in three different form factors. Then we fit the form factors into analytical functions and extrapolate them into time-like regions, which giving the coupling constant for the process. Our analysis indicates that the coupling constant for this vertex is GDs∗Dsϕ=4.12±0.70GeV−1G_{Ds*Ds\phi}=4.12\pm0.70 GeV^{-1}. The results of this work are very useful in the other phenomenological analysis. As an application, we calculate the coupling constant for the decay channel Ds∗→DsγD_{s}^{*}\rightarrow D_{s}\gamma and analyze the width of this decay with the assumption of the vector meson dominance of the intermediate ϕ(1020)\phi(1020). Our final result about the decay width of this decay channel is Γ=0.59±0.15keV\Gamma=0.59\pm0.15keV.Comment: arXiv admin note: text overlap with arXiv:1501.03088 by other author

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA
    • …
    corecore