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Abstract: The transmission of water waves under vertical thin plates, e.g., offshore floating 

breakwaters, oscillating water column wave energy converters, and so on, is a crucial feature that 

dominates the hydrodynamic performance of marine devices. In this paper, the analytical solution 

to the transmission of water waves under multiple 2D vertical thin plates is firstly derived based 

on the linear potential theory. The influences of relevant parameters on the wave transmission are 

discussed, which include the number of plates, the draft of plates, the distance between plates and 

the water depth. The analytical results suggest that the transmission of progressive waves 

gradually weakens with the growth of the number and draft of plates, and under the conditions of 

given number and draft of plates, the distribution of plates has significant influence on the 

transmission of progressive waves. The results of this paper contribute to the understanding of the 

transmission of water waves under multiple vertical thin plates, as well as the suggestion on 

optimal design of complex marine devices, such as a floating breakwater with multiple plates. 

Keywords: water waves; vertical thin plates; transmission; reflectivity; resonance 

 

1. Introduction 

There are numerous marine devices that contain vertical thin plates, such as offshore floating 

breakwaters (OFBs) and oscillating water column wave energy converters (OWC-WECs). It is of 

great significance to evaluate the transmission of water waves under these vertical thin plates, 

which dominate the hydrodynamic performance of marine devices. 

For a long time the research mainly focused on the transmission problem of water waves under 

one and two vertical plates. As for the wave passing through one thin plate, it is relatively simple 

and the transmission features are almost clear. As the wavelength increases, more wave energy 

passes through the plate, while less wave energy is reflected. Assuming the flow to be inviscid and 

irrotational, Wiegel [1] calculated the transmission coefficient by ignoring the influence of the 

reflected wave on the flow field, which resulted in a significant error as compared with the 

experimental results. In order to correct Wiegel’s method, Kriebel and Bollmann [2], based on 

similar assumptions, employed the analytical method to obtain corrected results with the 

consideration of the effects of reflected waves. However, their method neglects the disturbance of 

the wave near the thin plate and, thus, there still exists a deviation in the results. In contrast, Losada 

et al. [3] proposed a more rigorous mathematical model, in which the control equation is the Laplace 

equation and all boundary conditions on board and under board are satisfied. Porter and Evans [4] 

used Galerkin’s method to obtain the same solution as Losada et al. [3]. 

In the case of two vertical plates, the conditions for the resonance of the transmission wave and 

the reflection wave are found using both analytical and experimental methods. An approximate 

analytical solution was proposed by Srokosz and Evans [5]. They assumed that the two plates were 
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sufficiently far apart, and there was no interaction between them, i.e., the length of the wave is much 

less than the distance between the plates. For the more general situation, Wu and Liu [6] have 

obtained very desirable results, and the solutions to the Laplace equation, as well as all the boundary 

conditions related to the two plates are given. Moreover, there are some studies based on the 

modified boundary conditions on the two plates. Liu and Li [7] solved the wave transmission 

problem under two vertical plates, one of which was penetrable and the other was impenetrable. 

More recently, Shin and Cho [8] experimentally studied the transmission of water waves under two 

vertical thin plates, and found that the analytical results from the method proposed by Wu and Liu 

[6] agree well with the experimental ones. In Shin and Cho [8] the relationship between wave 

reflectivity, transmission, and wavelength was also studied. 

However, as far as we know, no attention has been paid to the transmission problems related 

to more than two vertical thin plates, which are common in ocean engineering, e.g., a column of 

OWC-WECs or OFBs. Due to the hydrodynamic interaction, the performance of multiple vertical 

thin plates should be significantly different from that of one or two plates. 

In this paper, the general analytic solution to the transmission problem of multiple 2D 

(two-dimensional) vertical thin plates is derived based on the linear potential flow theory. The 

impacts of key parameters on the wave transmission of different frequencies are investigated, 

including the number of plates, the distance between plates and the draft of plates. The analytical 

results are expected to contribute to the understanding of the hydrodynamic performance of 

complex marine structures, such as OFBs. 

2. Mathematical Model for Potentials of Water Waves under Multiple Vertical Plates 

As shown in Figure 1, a coordinate system 𝑜– 𝑥𝑧 is set on the water surface, with the 𝑥-axis 

pointing right and the 𝑧-axis pointing upward. The origin of the coordinates falls at the intersection 

of the first plate and the undisturbed free surface. There are 𝑁 vertical thin plates numbered from 

left to right. The draft of the 𝑖th plate is 𝑑𝑖. The depth of water is ℎ. The distance between 𝑖th plate 

and the first plate is 𝑏𝑖. The progressive waves advance along the negative 𝑥-axis direction. The 

flow field is divided into 𝑁 + 1 regions for the convenience of analysis. The velocity potential of the 

flow field in each region is denoted as 𝜙𝑖, 𝑖 = 1, 2, 3……𝑁 + 1. Assuming that the propagation time 

of progressive waves is long enough and the flow field is already stable, the velocity potential can be 

written as: 

{

𝜙1 = 𝜙0 + 𝜙R1 = 𝜙0 + 𝜙RF1 + 𝜙RN1, (𝑎)
𝜙𝑖 = 𝜙T𝑖−1 + 𝜙R𝑖 = 𝜙TF𝑖−1 + 𝜙TN𝑖−1 + 𝜙RF𝑖 + 𝜙RN𝑖 , 𝑖 = 2,3, ……𝑁 (𝑏)

𝜙𝑁+1 = 𝜙T𝑁 = 𝜙TF𝑁 + 𝜙TN𝑁 , (𝑐)

 (1) 

In Equation (1), 𝜙0 is the potential of progressive waves, 𝜙R𝑖 is the potential of reflection 

wave from 𝑖 th plate. 𝜙RF𝑖  and 𝜙RN𝑖  are the far-field and near-field components of 𝜙R𝑖 , 

respectively. 𝜙T𝑖  is the potential of transmitted wave from 𝑖 th plate. 𝜙TF𝑖  and 𝜙TN𝑖  are the 

far-field and near-field components of 𝜙T𝑖, respectively. Here the far-field waves refer to the wave 

whose amplitude (energy) remains unchanged during obstacle-free propagation, while the 

near-field waves refer to the one whose amplitude (energy) exponentially decays during 

obstacle-free propagation. 

In the steady state, the above velocity potential 𝜙𝑖 is: 

𝜙𝑖 = Re{𝜑𝑖e
−i𝜔𝑡} (2) 

In Equation (2), 𝜑𝑖 is the spatial component of 𝜙𝑖, 𝜔 is the natural frequency of progressive 

waves. 
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Figure 1. The sketch of water waves under 𝑁 vertical thin plates. ℎ is the water depth, 𝑑𝑖 is the 

draft of 𝑖th plate, 𝑏𝑖 is the distance from the 𝑖th plate to the first plate, 𝜙0 is the potential of 

progressive waves, 𝜙R𝑖  is the potential of reflection wave, and 𝜙T𝑖  is the potential of the 

transmission wave. 

2.1. Definite Problem for the Transmission and Reflection of Water Waves 

The velocity potential 𝜑𝑖 , 𝑖 = 1, 2, 3……𝑁 + 1 satisfies the following definite conditions: 

{
 
 

 
 
𝜕2𝜑𝑖
𝜕𝑥2

+
𝜕2𝜑𝑖
𝜕𝑧2

= 0, 𝑧 < 0 (𝑎)

𝜕𝜑𝑖
𝜕𝑧

= 0, 𝑧 = −ℎ (𝑏)

−𝜔2𝜑𝑖 + g
𝜕𝜑𝑖
𝜕𝑧

= 0, 𝑧 = 0 (𝑐)

 (3) 

The separation variable method is adopted to solve the definite problem shown by Equation (3), 

and the detail is given in Appendix A. The general solution for the velocity potential in each flow 

field region has the expression: 

 𝜑𝑖(𝑥, 𝑧) = 𝐴𝑖1e
𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) e

−i𝑘0𝑥 + 𝐴𝑖2e
𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) e

i𝑘0𝑥

+∑𝐵𝑖𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e−𝑘𝑛𝑥

∞

𝑛=1

+∑𝐶𝑖𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e𝑘𝑛𝑥

∞

𝑛=1

 (4) 

where 𝐴𝑖1, 𝐴𝑖2, 𝐵𝑖𝑛 , 𝐶𝑖𝑛 are unknowns that should be solved using the rest boundary conditions. 

In Equation (4), the first and second terms on the right hand side represent the potential of 

far-field waves spreading along the negative and positive 𝑥-axis direction, respectively. The third 

and fourth terms represent the potential of near-field waves spreading along the positive and 

negative 𝑥-axis direction, respectively. 

The velocity potentials in different regions are discussed as follows. 

2.1.1. Region 1 

In region 1 there only exist the first three terms on the right hand side of Equation (4), i.e.: 

                          𝜑1 = 𝜑0 + 𝜑RF1 + 𝜑RN1
= 𝐴11e

𝑘0h cosh 𝑘0(𝑧 + ℎ) e
−i𝑘0𝑥 + 𝐴12e

𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) e
i𝑘0𝑥  

+∑𝐵1𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e−𝑘𝑛𝑥

∞

𝑛=1

 
(5) 
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The first term is the potential of progressive waves, and the second and third ones are the 

potential of the far-field and near-field reflection waves, respectively. 

The progressive waves corresponding to the incident potential 𝜑0 can be written as: 

𝜁I = Re{𝜁0e
−i(𝜔𝑡+𝑘0𝑥)} (6) 

In Equation (6), 𝜁0 is the amplitude of progressive waves. There exists relation between the 

incident potential and the elevation of the free surface: 

𝜁İ =
𝜕(𝜑0e

−i𝜔𝑡)

𝜕𝑧
,   𝑧 = 0 (7) 

i.e.: 

𝐴11e
𝑘0ℎ𝑘0 sinh 𝑘0ℎ e

−i𝑘0𝑥 = −i𝜔ζ0e
−i𝑘0𝑥 (8) 

Combining Equations (5) and (8), the incident potential can be obtained: 

𝜑0 = −
ig𝜁0
𝜔

cosh 𝑘0(𝑧 + ℎ)

cosh 𝑘0ℎ
e−i𝑘0𝑥 (9) 

The far-field reflection wave has the expression: 

𝜁RF1 = Re{𝑅0𝜁0e
−i(𝜔𝑡−𝑘0𝑥)} (10) 

where 𝑅0 is the far-field reflection coefficient, which should be between 0 and 1. Thereby, the 

velocity potential of the far-field reflection wave can be written as: 

𝜑RF1 = −𝑅0
ig𝜁0
𝜔

cosh 𝑘0(𝑧 + ℎ)

cosh 𝑘0ℎ
ei𝑘0𝑥 (11) 

Analogously, one can obtain the near-field reflection wave: 

𝜑RN1 = −∑𝑅𝑛
igζ0
𝜔

cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e−𝑘𝑛𝑥

∞

𝑛=1

 (12) 

where 𝑅𝑛 is the near-field reflection coefficient. 

For the convenience of writing, the following substitutions are made: 

𝐼0(𝑧) = −
igζ0
𝜔

cosh 𝑘0(𝑧 + ℎ)

cosh 𝑘0ℎ
 (13) 

𝐼𝑛(𝑧) = −
igζ0
𝜔

cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
 (14) 

Substituting Equations (13) and (14) into Equations (9), (11), and (12), and then substituting the 

resulting equations into Equation (5), one obtains: 

𝜑1 = 𝐼0(𝑧)e
−i𝑘0𝑥 + 𝑅0𝐼0(𝑧)e

i𝑘0𝑥 +∑𝑅𝑛𝐼𝑛(𝑧)e
−𝑘𝑛𝑥

∞

𝑛=1

 (15) 

2.1.2. Region 𝑖 (𝑖 = 2, 3, … , 𝑁) 

In region 𝑖 (𝑖 = 2, 3, … , 𝑁), there exist far-field and near-field transmitted waves originating 

from the right plate ((𝑖 − 1)th plate) and spreading toward the negative 𝑥-axis direction, as well as 

far-field and near-field reflection waves originating from the left plate (𝑖th plate) and spreading 

toward the positive 𝑥-axis direction. Therefore, there should exist four terms in the expression of 

the velocity potential, which can be written as: 

 𝜑𝑖 = 𝐼0(𝑧)(𝐴(𝑖,0)e
−i𝑘0(𝑥+𝑏𝑖−1) + 𝐵(𝑖,0)e

i𝑘0(𝑥+𝑏𝑖))

+∑ 𝐼𝑛(𝑧)(𝐴(𝑖,𝑛)e
𝑘𝑛(𝑥+𝑏𝑖−1) + 𝐵(𝑖,𝑛)e

−𝑘𝑛(𝑥+𝑏𝑖))
∞

𝑛=1
 (16) 
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where 𝐴(𝑖,0), 𝐴(𝑖,𝑛) are the far-field and near-field transmission coefficients, respectively; 𝐵(𝑖,0), 𝐵(𝑖,𝑛) 

are the far-field and near-field reflection coefficients, respectively. 

2.1.3. Region 𝑁 + 1 

In region 𝑁 + 1, there only exist far-field and near-field transmitted waves originating from 

the right plate (𝑁th plate) and spreading toward the negative 𝑥-axis direction. Thus the velocity 

potential in region 𝑁 + 1 should have the following expression: 

𝜑𝑁+1 = 𝑇0𝐼0(𝑧)e
−i𝑘0(𝑥+𝑏𝑁) +∑𝑇𝑛𝐼𝑛(𝑧)e

𝑘𝑛(𝑥+𝑏𝑁)

∞

𝑛=1

 (17) 

where 𝑇0, 𝑇𝑛 are the far-field and near-field transmission coefficients, respectively. 

2.2. Velocity Potential in Flow Fields 

The coefficients in Equations (15)–(17) are unknown, and they need to be solved according to 

the remaining boundary conditions. The first boundary condition is: 

𝜕𝜑𝑖
𝜕𝑥

=
𝜕𝜑𝑖+1
𝜕𝑥

, 𝑥 = −𝑏𝑖 , 𝑧 < 0 (18) 

which means that the flow velocities from the two neighbouring domains are the same on their 

adjacent boundary. 

Taking the derivative of Equations (15)–(17) with respect to 𝑥, and then taking Equation (18) 

into account, one obtains: 

{
 
 

 
 𝑅0 = 1 − 𝐴(2,0) + 𝐵(2,0)ei𝑘0𝑏2 (𝑎)

𝑅𝑛 = −𝐴(2, 𝑛) + 𝐵(2, 𝑛)e−𝑘𝑛𝑏2 (𝑏)

𝑇0 = 𝐴(𝑁, 0)e−i𝑘0(𝑏𝑁−1−𝑏𝑁) − 𝐵(𝑁, 0) (𝑐)

𝑇𝑛 = 𝐴(𝑁, 𝑛)e
𝑘𝑛(𝑏𝑁−1−𝑏𝑁) − 𝐵(𝑁, 𝑛) (𝑑)

 (19) 

Substituting Equation (19) into Equations (15)–(17) yields: 

{
 
 
 
 
 

 
 
 
 
 
𝜑1 = 𝐼0(𝑧)e

−i𝑘0𝑥 + (1 − 𝐴(2,0) + 𝐵(2,0)ei𝑘0𝑏2)𝐼0(𝑧)e
i𝑘0𝑥 +

∑ (−𝐴(2, 𝑛) + 𝐵(2, 𝑛)e−𝑘𝑛𝑏2)𝐼𝑛(𝑧)e
−𝑘𝑛𝑥

∞

𝑛=1
,

(𝑎)

𝜑𝑖 = 𝐼0(𝑧)(𝐴(𝑖, 0)e
−i𝑘0(𝑥+𝑏𝑖−1) + 𝐵(𝑖, 0)ei𝑘0(𝑥+𝑏𝑖)) +

             ∑ (𝐴(𝑖, 𝑛)e𝑘𝑛(𝑥+𝑏𝑖−1) + 𝐵(𝑖, 𝑛)e−𝑘𝑛(𝑥+𝑏𝑖))𝐼𝑛(𝑧)
∞

𝑛=1
,

𝑖 = 2,3, … , 𝑁 (𝑏)

𝜑𝑁+1 = 𝐼0(𝑧)e
−i𝑘0(𝑥+𝑏𝑁) (𝐴(𝑁, 0)e−i𝑘0(𝑏𝑁−1−𝑏𝑁) − 𝐵(𝑁, 0)) +

            ∑ (𝐴(𝑁, 𝑛)e𝑘𝑛(𝑏𝑁−1−𝑏𝑁) − 𝐵(𝑁, 𝑛)) 𝐼𝑛(𝑧)e
𝑘𝑛(𝑥+𝑏𝑁)

∞

𝑛=1
,

(𝑐)

 (20) 

In addition, there still exist two sets of boundary conditions. One of them is that the thin plates 

are impenetrable, so the fluid velocity on the surface of plates is 0. The other is that the velocity 

potential is the same on the adjacent boundaries of each pair of the neighbouring regions. These 

boundary conditions can be written as (𝑖 = 1, 2, … , 𝑁): 

{

𝜕𝜑𝑖
𝜕𝑥

=
𝜕𝜑𝑖+1
𝜕𝑥

= 0, 𝑥 = −𝑏𝑖 , −𝑑𝑖 < 𝑧 < 0 (𝑎)

𝜑𝑖 = 𝜑𝑖+1, 𝑥 = −𝑏𝑖 , −ℎ < 𝑧 < −𝑑𝑖 (𝑏)
 (21) 

Substituting Equation (20) into Equation (21) leads to (𝑖 = 2, 3,… , 𝑁 − 1): 
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
i𝑘0𝐼0(𝑧)(−𝐴(2,0) + 𝐵(2,0)e

i𝑘0𝑏2) +

          ∑ 𝐼𝑛(𝑧)𝑘𝑛(𝐴(2, 𝑛) − 𝐵(2, 𝑛)e
−𝑘𝑛𝑏2)

∞

𝑛=1
= 0,

−𝑑1 < 𝑧 < 0 (𝑎)

∑ 𝐼𝑛(𝑧)𝐴(2, 𝑛)
∞

𝑛=0
= 𝐼0(𝑧), −ℎ < 𝑧 < −𝑑1 (𝑏)

i𝑘0𝐼0(𝑧) (−𝐴(𝑖, 0)e
−i𝑘0(𝑏𝑖−1−𝑏𝑖) + 𝐵(𝑖, 0)) +

          ∑ 𝐼𝑛(𝑧)𝑘𝑛 (𝐴(𝑖, 𝑛)e
𝑘𝑛(𝑏𝑖−1−𝑏𝑖) − 𝐵(𝑖, 𝑛))

∞

𝑛=1
= 0,

−𝑑𝑖 < 𝑧 < 0 (𝑐)

𝐼0(𝑧) (𝐴(𝑖, 0)e
−i𝑘0(𝑏𝑖−1−𝑏𝑖) + 𝐵(𝑖, 0)) +

          ∑ 𝐼𝑛(𝑧)(𝐴(𝑖, 𝑛)e
𝑘𝑛(𝑏𝑖−1−𝑏𝑖) + 𝐵(𝑖, 𝑛))

∞

𝑛=1
−

          𝐼0(𝑧)(𝐴(𝑖 + 1,0) + 𝐵(𝑖 + 1,0)e
i𝑘0(𝑏𝑖+1−𝑏𝑖)) −

          ∑ 𝐼𝑛(𝑧)(𝐴(𝑖 + 1, 𝑛) + 𝐵(𝑖 + 1, 𝑛)e
−𝑘𝑛(𝑏𝑖+1−𝑏𝑖))

∞

𝑛=1
= 0,

−ℎ < 𝑧 < −𝑑𝑖 (𝑑)

i𝑘0𝐼0(𝑧) (−𝐴(𝑁, 0)e
−i𝑘0(𝑏𝑁−1−𝑏𝑁) + 𝐵(𝑁, 0)) +

          ∑ 𝐼𝑛(𝑧)𝑘𝑛(𝐴(𝑁, 𝑛)e
𝑘𝑛(𝑏𝑁−1−𝑏𝑁) − 𝐵(𝑁, 𝑛))

∞

𝑛=1
= 0,

−𝑑𝑁 < 𝑧 < 0 (𝑒)

∑ 𝐼𝑛(𝑧)𝐵(𝑁, 𝑛)
∞

𝑛=0
= 0, −ℎ < 𝑧 < −𝑑𝑁 (𝑓)

 (22) 

To obtain the coefficients 𝐴(𝑖, 𝑛) and 𝐵(𝑖, 𝑛) (𝑖 = 2, 3, … , 𝑁), one should eliminate variables 

𝐼𝑛(𝑧), 𝑛 = 0, 1, 2, … ,∞  from Equation (22). To this end, the following steps are carried out. 

Multiplying Equation (22) by 𝐼𝑚(𝑧) (𝑚 = 0, 1, 2, … ), then multiplying Equations (22b), (22d), and 

(22f) by 𝑘0, then integrating the resulting equations over the domain of definition, finally adding 

the resulting Equation (22a) to (22b), (22c) to (22d), and (22e) to (22f), respectively, one obtains (𝑖 =

1, 2, 3, … , 𝑁;  𝑚 = 0, 1, 2, …): 

∑𝐶𝑖𝑛
𝑚𝐴(𝑖, 𝑛)

∞

𝑛=0

+∑𝐷𝑖𝑛
𝑚𝐵(𝑖, 𝑛)

∞

𝑛=0

+∑𝐸𝑖𝑛
𝑚𝐴(𝑖 + 1, 𝑛)

∞

𝑛=0

+∑𝐹𝑖𝑛
𝑚𝐵(𝑖 + 1, 𝑛)

∞

𝑛=0

= 𝐺𝑖
𝑚  (23) 

with: 

𝐶𝑖𝑛
𝑚 =

{
 
 

 
 
0, 𝑖 = 1

(−i𝑘0𝑓𝑚0(−𝑑𝑖 , 0) + 𝑘0𝑓𝑚0(−ℎ,−𝑑𝑖))e
−i𝑘0(𝑏𝑖−1−𝑏𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 = 0

(𝑘𝑛𝑓𝑚𝑛(−𝑑𝑖 , 0) + 𝑘0𝑓𝑚𝑛(−ℎ, −𝑑𝑖))e
𝑘𝑛(𝑏𝑖−1−𝑏𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 ≥ 1

−i𝑘0𝑓𝑚0(−𝑑𝑁 , 0)e
−i𝑘0(𝑏𝑁−1−𝑏𝑁), 𝑖 = 𝑁, 𝑛 = 0

𝑘𝑛𝑓𝑚𝑛(−𝑑𝑁 , 0)e
𝑘𝑛(𝑏𝑁−1−𝑏𝑁), 𝑖 = 𝑁, 𝑛 ≥ 1

 (24) 

𝐷𝑖𝑛
𝑚 =

{
 
 

 
 
0, 𝑖 = 1
i𝑘0𝑓𝑚0(−𝑑𝑖 , 0) + 𝑘0𝑓𝑚0(−ℎ,−𝑑𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 = 0

−𝑘𝑛𝑓𝑚𝑛(−𝑑𝑖 , 0) + 𝑘0𝑓𝑚𝑛(−ℎ,−𝑑𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 ≥ 1

i𝑘0𝑓𝑚0(−𝑑𝑁 , 0) +𝑘0𝑓𝑚0(−ℎ,−𝑑𝑁), 𝑖 = 𝑁, 𝑛 = 0

−𝑘𝑛𝑓𝑚𝑛(−𝑑𝑁 , 0) + 𝑘0𝑓𝑚𝑛(−ℎ,−𝑑𝑁), 𝑖 = 𝑁, 𝑛 ≥ 1

 (25) 

𝐸𝑖𝑛
𝑚 = {

−i𝑘0𝑓𝑚0(−𝑑1, 0) + 𝑘0𝑓𝑚0(−ℎ,−𝑑1), 𝑖 = 1, 𝑛 = 0

𝑘𝑛𝑓𝑚𝑛(−𝑑1, 0) + 𝑘0𝑓𝑚𝑛(−ℎ,−𝑑1), 𝑖 = 1, 𝑛 ≥ 1

−𝑘0𝑓𝑚𝑛(−ℎ,−𝑑𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1
0, 𝑖 = 𝑁

 (26) 

𝐹𝑖𝑛
𝑚 =

{
 
 

 
 
i𝑘0𝑓𝑚0(−𝑑1, 0)e

i𝑘0𝑏2 , 𝑖 = 1, 𝑛 = 0

−𝑘𝑛𝑓𝑚𝑛(−𝑑1, 0)e
−𝑘𝑛𝑏2 , 𝑖 = 1, 𝑛 ≥ 1

−𝑘0𝑓𝑚0(−ℎ,−𝑑𝑖)e
i𝑘0(𝑏𝑖+1−𝑏𝑖), 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 = 0

−𝑘0𝑓𝑚𝑛(−ℎ,−𝑑𝑖)e
−𝑘0(𝑏𝑖+1−𝑏𝑖) 2 ≤ 𝑖 ≤ 𝑁 − 1, 𝑛 ≥ 1

0, 𝑖 = 𝑁

 (27) 
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𝐺𝑖
𝑚 = {

𝑘0𝑓𝑚0(−ℎ,−𝑑1), 𝑖 = 1
0, 𝑖 ≥ 2

 (28) 

𝑓𝑚𝑛(𝑧1, 𝑧2) = ∫ 𝐼𝑚(𝑧)𝐼𝑛(𝑧)d𝑧

𝑧2

𝑧1

 (29) 

From Equations (23)–(29) one can obtain coefficients 𝐴(𝑖, 𝑛) and 𝐵(𝑖, 𝑛) (𝑖 = 2, 3, … , 𝑁). In the 

calculation, the value of 𝑚 and 𝑛 could be truncated to limited numbers. Once all coefficients are 

solved, the velocity potentials in any region can be obtained using Equation (20). 

Within the framework of potential flows, the wave energy should be conserved [8], i.e., the 

following condition should be satisfied: 

|𝑇0|
2 = |𝐴(𝑖, 0)|2 − |𝐵(𝑖, 0)|2 = 1 − |𝑅0|

2 ≥ 0, 𝑖 = 2,3, … , 𝑁 (30) 

In Equation (30), the coefficients 𝑇𝑛 , 𝐴(𝑖, 𝑛), 𝐵(𝑖, 𝑛)  and 𝑅𝑛 (𝑛 ≥ 1)  related to near-field 

waves are not included due to the fact that they do not contribute to the wave energy propagation 

[8]. Therefore, the transmission coefficient 𝑇0 at the last plate (see Equation (19c)) is sufficient to 

reveal the characteristics of progressive waves under multiple vertical thin plates. 

3. Numerical Results and Discussion 

In this section, the transmission of water waves under multiple 2D vertical thin plates are 

evaluated and discussed. The self-developed MATLAB codes for calculating the transmission of 

water waves can be found on GitHub (https://github.com/guozhiqun/Waves-under-Multiple-Vertical 

-Thin-Plates). In the numerical calculation, the maximum of 𝑚 and 𝑛 in Equations (23)–(29) are 

truncated to 100, which proved to be sufficient for obtaining convergent results. 

3.1. The Transmission of Progressive Waves due to Two Plates 

To validate the numerical model for transmission waves under multiple vertical thin plates 

developed in this paper, the case of two vertical thin plates is investigated, and the numerical 

results are compared with those from Shin and Cho [8]. In the numerical setup, the water depth is 

ℎ = 0.321 m. The distance between two plates is 𝑏 = 𝑏2 = 0.585 m. 

3.1.1. Verification of the Numerical Model 

The draft of both plates is 𝑑1 = 𝑑2 = 0.06 m. The wavelength 𝜆 ranges from 0.27 m to 6.85 m, 

and the plate distance to wavelength ratio 𝑏/𝜆 ranges from 0.085 to 2.14. As shown in Figure 2, 

the amplitude and phase of the transmission coefficient with respect to 𝑏/𝜆 obtained from the 

current model agrees well with those from Shin and Cho [8]. 

From Figure 2a one can observe that with the growth of 𝑏/𝜆, in general the transmission 

coefficient (amplitude) |𝑇0| gradually decreases, though it surges in some exceptional wavelengths 

(𝑏 𝜆⁄ = 0.695, 1.11, 1.55, …). In other words, the longer the incident wavelength, the more wave 

energy passes through the two plates, while some exceptional waves can penetrate two plates and 

propagate ahead unhindered.  

The transmission coefficient surge phenomenon can be explicated by the phase difference 

∠𝐴(2,0) − ∠𝐵(2,0) between the transmission coefficient on the first plate 𝐴(2,0) and the reflection 

coefficient on the second plate 𝐵(2,0), as shown in Figure 3. One can find that, in the exceptional 

waves (𝑏 𝜆⁄ = 0.695, 1.11, 1.55, … ) , the phase difference approximately satisfies the condition 

∠𝐴(2,0) − ∠𝐵(2,0) ≅ 0∘ or 180∘, which represents the standing waves between the two plates. The 

conclusion was evidenced in the experiments [8] in which the standing waves with 1, 2, 3, … nodes 

occur in the waves with 𝑏 𝜆⁄ = 0.695, 1.11, 1.55, …, respectively. That is to say, when there exist 

standing waves between the two plates, the wave energy almost completely passes through two 

plates without reflection (|𝑅0| = 0). 
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(a) (b) 

Figure 2. Comparison of the transmission coefficient of progressive waves obtained using the 

present numerical model with the numerical results from Shin and Cho [8]. (a) The amplitude of the 

coefficient |𝑇0|; and (b) the phase of the coefficient ∠𝑇0. 

 

Figure 3. The phase difference ∠𝐴(2,0) − ∠𝐵(2,0) between the transmission coefficient on the first 

plate 𝐴(2,0) and the reflection coefficient on the second plate 𝐵(2,0). 

3.1.2. Effect of Near-Field Transmission Coefficients 

In this case, the far-field transmission coefficient |𝑇0| and near-field transmission coefficients 

|𝑇𝑛| (𝑛 ≥ 1) are compared with respect to 𝑏/𝜆. The draft of both plates is 𝑑1 = 𝑑2 = 0.06 m. As 

depicted in Figure 4, the far-field coefficient |𝑇0|  is much greater than the near-field ones, 

especially in the medium to long waves (𝑏/𝜆 < 1.5). With the increase of index 𝑛, the near-field 

coefficient term |𝑇𝑛| (𝑛 ≥ 1)  gradually decreases to zero. From this sense, in the numerical 

calculation, it is acceptable to truncate the near-field terms to a limited number. 

In addition, according to Equation (17), the near-field velocity potentials of the transmission 

waves exponentially approach to zero at far-field, i.e.: 

lim
𝑥→−∞

∑𝑇𝑛𝐼𝑛(𝑧)e
𝑘𝑛(𝑥+𝑏𝑁)

∞

𝑛=1

= 0 (31) 

Therefore, the near-field waves do not make a contribution to wave energy transmission, and 

the near-field transmission coefficients 𝑇𝑛(𝑛 ≥ 1) can be omitted in the study. 
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Figure 4. Comparison of far-field transmission coefficient |𝑇0| and near-field transmission 

coefficients |𝑇𝑛| (𝑛 ≥ 1) with respect to plate distance to wavelength ratio 𝑏/𝜆. 

3.1.3. Effect of the Plate Draft 

The results from Shin and Cho [8] suggest that the transmission coefficient |𝑇0| of the two 

plates monotonically decreases with the plate draft (the draft of the two plates is kept same). 

However, one might be interested in how the transmission of progressive waves changes when 

only one plate draft varies. Actually, in most OWC-WEC, the two plates are in different drafts, i.e., 

the front baffle has a shallower draft than the back baffle, which can reduce the reflectivity of 

progressive waves at the front baffle and the transmission at the back baffle, and capture more 

wave energy. 

In this case, the draft of the first plate is fixed at 𝑑1 = 0.06 m, while the draft of the second one 

𝑑2 varies from 0.03 m to 0.15 m. Several groups of representative results with respect to different 

𝑑2 are shown in Figure 5. 

 

Figure 5. The transmission coefficient |𝑇0| of progressive waves with respect to different draft of 

the second plate 𝑑2. The draft of the first plate is fixed at 𝑑1 = 0.06 m. 

Figure 5 clearly depicts the change of |𝑇0| with respect to 𝑑2 in different wavelengths. If the 

wavelength 𝜆 is much longer than the plate distance 𝑏, e.g., 𝑏 𝜆⁄ = 0.24, the increase of draft 𝑑2 
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has little influence on the transmission coefficient. When the wavelength 𝜆 is comparable to the 

plate distance 𝑏 , e.g., 𝑏 𝜆⁄ = 0.77, 1.15 , the increase of draft 𝑑2  significantly reduces the 

transmission coefficient |𝑇0| . In particular, in the vicinity of 𝑑2 𝑑1⁄ = 0.8 , the transmission 

coefficient |𝑇0| firstly increases and then decreases with the growth of 𝑑2 𝑑1⁄ . On the other hand, 

when the wavelength 𝜆  is much smaller than the plate distance 𝑏 , e.g., 𝑏 𝜆⁄ = 1.37 , the 

transmission coefficient |𝑇0| is dominant by the draft 𝑑1, which makes |𝑇0| to be small even at 

𝑑2 𝑑1⁄ = 0.5, and with the growth of 𝑑2, the transmission coefficient |𝑇0| gradually decreases to 

zero. 

3.2. The Transmission of Progressive Waves due to Multiple Plates 

3.2.1. Effect of the Plate Number 

The water depth is set as ℎ = 0.321 m, and the distance between every two neighbouring 

plates is 𝑏 = 0.585 m. The draft of all plates is set as 𝑑𝑖 = 0.06 m (𝑖 = 1,2, … , 𝑁). The number of 

plates 𝑁 is taken from 3 to 10. The transmission coefficients of progressive waves due to different 

number of plates are shown in Figure 6. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The transmission coefficient of progressive waves under different number of plates. (a) 

Plate number 𝑁 = 2. (b) Plate number 𝑁 = 3. (c) Plate number 𝑁 = 6. (d) Plate number 𝑁 = 10. 

From Figure 6 one can find that, with the growth of the plate number, the progressive waves of 

long wavelength (𝑏 𝜆⁄ < 0.25) almost propagate intact through the plates, i.e., in long waves the 

transmission coefficient is |𝑇0| ≅ 1 for an arbitrary plate number. On the other hand, in short to 

medium waves (𝑏 𝜆⁄ > 0.25), the transmission coefficient descends to zero with the growth of 𝑏 𝜆⁄ . 

However, in the vicinity of certain wavelengths (𝑏 𝜆⁄ ≅ 1.11, 1.55, …) independent to the plate 

number, the transmission coefficient surges to a certain height and then follows back. Moreover, 

with the growth of the plate number, the surge tends to be multi-peak. These phenomena should 
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associate with the standing waves between plates, which occur in certain 𝑏 𝜆⁄  conditions, and 

make the progressive waves pass through multiple plates with little reflection. Certainly, with the 

growth of the plate number, some wave energy is inevitably reflected and the surge amplitude of 

the transmission coefficient would decrease as compared to the two plate case.  

3.2.2. Effect of the Plate Draft to Water Depth Ratio 

In this case, the effect of plate draft to water depth ratio 𝑑/ℎ on the transmission coefficient is 

investigated. The draft of the plates is set as 𝑑𝑖 = 𝑑 = 0.09 m (𝑖 = 1,2, … , 𝑁)  and the distance 

between neighbouring plates is set as 𝑏 = 0.3 m, which could make the transmission coefficient 

more sensitive to the wavelength, according to the study in Section 3.1. Three water depths ℎ =

0.121 m, 0.221 m, 0.321 m, are employed for the study. The corresponding plate draft to water depth 

ratios are 𝑑/ℎ = 0.74, 0.41, 0.28. Note that in shallow water or larger plate draft to water depth ratio 

(𝑑/ℎ = 0.74), along the water depth direction most water is shielded by plates. 

Figure 7 compares the transmission coefficient in different water depth. One can observe that 

in shallower water or larger plate draft to the water depth ratio (ℎ = 0.121 m or 𝑑/ℎ = 0.74), the 

entire transmission coefficient curves move toward the left direction of 𝑏 𝜆⁄ , i.e., the transmission 

coefficient starts to decrease in longer waves, while with the growth of the water depth or the 

reduction of the plate draft to water depth ratio (ℎ = 0.221 m, 0.321 m or 𝑑/ℎ = 0.41, 0.25), the 

transmission coefficient does not make significant changes. 

  
(a) (b) 

  
(c) (d) 

Figure 7. The influence of plate draft to water depth ratio on the transmission coefficient of 

progressive waves. (a) Plate number 𝑁 = 2. (b) Plate number 𝑁 = 3. (c) Plate number 𝑁 = 6. (d) 

Plate number 𝑁 = 10. 

It can be concluded that the larger plate draft to the water depth ratio (i.e., the greater portion 

of water shielded by plates), the smaller the transmission coefficient one obtains, and in the longer 
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waves the transmission coefficient surges, i.e., standing waves between plates occur in the longer 

waves. 

3.2.3. Effect of the Plate Arrangement 

In this case, the influence of plate arrangement on the transmission coefficient is investigated. 

The draft of the plates is set as 𝑑𝑖 = 𝑑 = 0.09 m (𝑖 = 1, 2, … , 𝑁), and the depth of water is set as ℎ =

0.321 m. For comparison purposes, two plate arrangements, even and uneven, are employed for the 

study. The distance between the first and 𝑖th plate for these two arrangements can be written as: 

𝑏𝑖 = {

0.3(𝑖 − 1) m, even arrangement 

(0.3(𝑖 − 1) + 0.1
(𝑖 − 1)(𝑖 − 2)

2
)  m, uneven arrangement 

,    𝑖 = 2,3, … , 𝑁 (32) 

Figure 8 portrays the transmission coefficient in the different plate arrangements. One can find 

that, in long waves (𝑏 𝜆⁄ < 0.3), the plate arrangement has little effect on the transmission coefficient, 

while, in medium waves (0.3 < 𝑏 𝜆⁄ < 1 ), the transmission coefficient due to uneven plate 

arrangement decreases more quickly with the increase of 𝑏 𝜆⁄  than the even case. Moreover, in 

short waves (𝑏 𝜆⁄ > 1), there are almost no significant transmission coefficient surges in the uneven 

plate arrangement case, as compared to the even plate arrangement case. 

  
(a) (b) 

  
(c) (d) 

Figure 8. The influence of plate arrangement on the transmission coefficient of progressive waves. (a) 

Plate number 𝑁 = 2. (b) Plate number 𝑁 = 3. (c) Plate number 𝑁 = 6. (d) Plate number 𝑁 = 10. 

It is not surprising that the uneven plate arrangement can have such effects. As demonstrated 

in the Section 3.1.1, the occurrence of standing waves mainly relates to the plate distance to 

wavelength ratio 𝑏/𝜆. For the even arrangement plates with certain 𝑏/𝜆, the standing waves might 

appear between every pair of neighbouring plates and the progressive wave can pass through 

multiple plates and, finally, the transmission coefficient surges happen. For the uneven 
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arrangement plates, however, the 𝑏/𝜆 varies and it is difficult to produce standing waves between 

every pair of neighbouring plates, which results in the reflection of progressive wave, as well as the 

decrease of the transmission coefficient. The characteristic of an uneven arrangement of plates will 

benefit the design of floating breakwaters, which can more completely intercept the short waves 

than the conventional even plate arrangement. 

4. Conclusions 

In this paper, the analytical solution to the transmission of progressive water waves under 

multiple 2D vertical thin fixed plates is presented based on the linear potential theory, in which the 

number of plates can be arbitrary. The numerical model is validated through the case of two 

vertical thin plates, where the numerical results agree well with those from Shin and Cho [8]. 

The influences of relevant parameters, including the number of plates, the draft of plates, the 

distance between the plates, and the water depth on the transmission coefficient are investigated, 

which reflects the proportion of transmitted wave energy through the plates. The numerical results 

suggest that, with the growth of the plate draft or plate draft to water depth ratio, the transmission 

coefficient generally gradually decreases to zero, though some transmission coefficient surges that 

are associated with the standing waves between neighbouring plates appear in the certain waves; 

with the growth of plate number, the transmission coefficient surge tends to be multi-peak and the 

surge amplitude significantly decreases. Moreover, the plate arrangement has significant influence 

on the transmission coefficient. The uneven plate arrangement can suppress the production of 

standing waves between neighbouring plates and, thus, reduce the transmission coefficient. 

It is worth noting that the analytical model and the numerical results proposed in this paper 

are within the linear and inviscid framework. The nonlinear and viscous effects of water waves are 

not taken into account. Nevertheless, the results of this paper contribute to the knowledge of the 

transmission of progressive water waves under multiple vertical thin plates, which can be 

employed for the optimal design of a floating breakwater with multiple plates. 
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Appendix A 

Using the separation variable method to solve the definite problem given in Equation (3). It is 

assumed that: 

𝜑𝑖(𝑥, 𝑧) = 𝑋(𝑥)𝑍(𝑧) (A1) 

Substituting (A1) into Equation (3a), one obtains: 

�̈�(𝑥)𝑍(𝑧) + 𝑋(𝑥)�̈�(𝑧) = 0 (A2) 

or: 

 −
�̈�(𝑥)

𝑋(𝑥)
=
�̈�(𝑧)

𝑍(𝑧)
= 𝜇 (A3) 

where 𝜇 is independent of 𝑥 and 𝑧. Thereby Equation (A3) can be transformed to: 

{
�̈�(𝑧) − 𝜇𝑍(𝑧) = 0, (𝑎)

�̈�(𝑧) + 𝜇𝑋(𝑧) = 0, (𝑏)
 (A4) 
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In the following, three cases for solving the Equation (A4) are respectively discussed according 

to the value of 𝜇: 

(1) 𝜇 > 0 

Denoting 𝜇 = 𝑘2, then from Equation (A4a) one can obtain: 

𝑍(𝑧) = 𝐴e−𝑘𝑧 + 𝐵e𝑘𝑧 (A5) 

Substituting Equation (A5) into (A1), and then into Equations (3b) and (3c) leads to: 

{
−𝐴𝑘e𝑘ℎ + 𝐵𝑘e−𝑘ℎ = 0, (𝑎)

𝐴(−𝑘 − 𝜈) + 𝐵(𝑘 − 𝜈) = 0, (𝑏)
 (A6) 

where 𝜈 = 𝜔2/g. The condition for the nonzero solution to Equation (A6) is: 

| −𝑘e
𝑘ℎ 𝑘e−𝑘ℎ

−𝑘 − 𝜈 𝑘 − 𝜈
| = 0 (A7) 

The solution to Equation (A7) is 𝑘 = 𝑘0, where: 

𝑘0 tanh 𝑘0ℎ = 𝜈 (A8) 

Combining Equations (A5)–(A8), one obtains: 

𝑍(𝑧) = 𝐴e𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) (A9) 

On the other hand, from Equation (A4b) one obtains: 

𝑋(𝑥) = 𝐵e−i𝑘0𝑥 + 𝐶ei𝑘0𝑥 (A10) 

Combining Equations (A9) and (A10), the velocity potential can be written as: 

 𝜑𝑖(𝑥, 𝑧) = 𝐴𝑖1e
𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) e

−i𝑘0𝑥 + 𝐴𝑖2e
𝑘0ℎ cosh 𝑘0(𝑧 + ℎ) e

i𝑘0𝑥 (A11) 

(2) 𝜇 = 0 

From Equation (A4a), it can be obtained that: 

𝑍(𝑧) = 𝐴𝑧 + 𝐵 
(A12) 

Substituting Equation (A12) into (A1), and then into Equations (3b) and (3c) yields: 

{
𝐴 = 0, (𝑎)
−𝜈𝐵 + A = 0, (𝑏)

 (A13) 

Obviously, there only exist zero solutions to 𝐴 and 𝐵, as well as to 𝑋(𝑥), 𝑍(𝑧) and 𝜑𝑖(𝑥, 𝑧). 

(3) 𝜇 < 0 

Denoting 𝜇 = −𝑘2, then from Equation (A4a) one can obtain: 

𝑍(𝑧) = 𝐴 cos 𝑘𝑧 + 𝐵 sin 𝑘𝑧 (A14) 

Substituting Equation (A12) into (A1), and then into Equations (3b) and (3c) comes to: 

{
𝐴𝑘 sin 𝑘ℎ + 𝐵𝑘 cos 𝑘ℎ = 0, (𝑎)
−𝜈𝐴 + 𝑘𝐵 = 0, (𝑏)

 (A15) 

The condition for the nonzero solution to Equation (A15) is: 

|
𝑘 sin 𝑘ℎ 𝑘 cos 𝑘ℎ
−𝜈 𝑘

| = 0 (A16) 

The solution to Equation (A16) is 𝑘 = 𝑘𝑛, where: 

−𝑘𝑛 tan 𝑘𝑛ℎ = 𝜈,    𝑛 = 1,2, … (A17) 

Combining Equations (A14)–(A17), one obtains: 
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𝑍(𝑧) = ∑𝐴𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ

∞

𝑛=1

 (A18) 

On the other hand, from (A4b) one obtains: 

𝑋(𝑥) = ∑𝐵𝑛e
−𝑘𝑛𝑥

∞

𝑛=1

+∑𝐶𝑛e
𝑘𝑛𝑥

∞

𝑛=1

 (A19) 

Combining Equations (A18) and (A19) leads to the velocity potential: 

𝜑𝑖(𝑥, 𝑧) = ∑𝐵𝑖𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e−𝑘𝑛𝑥

∞

𝑛=1

+∑𝐶𝑖𝑛
cos 𝑘𝑛(𝑧 + ℎ)

cos 𝑘𝑛ℎ
e𝑘𝑛𝑥

∞

𝑛=1

 (A20) 
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