6,724 research outputs found

    Thermodynamics of the Schwarzschild-AdS black hole with a minimal length

    Get PDF
    Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ{\delta}-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ{\delta}-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ{\delta}-function.Comment: v1: 25 pages, 14 figures; v2: 26 pages, 15 figures; v3: minor revisions, final version to appear in Adv. High Energy Phy

    Magic wavelengths for the 6s^2\,^1S_0-6s6p\,^3P_1^o transition in ytterbium atom

    Full text link
    The static and dynamic electric-dipole polarizabilities of the 6s^2\,^1S_0 and 6s6p\,^3P_1^o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6s^2\,^1S_0-6s6p\,^3P_1^o transition, we find two magic wavelengths at 1035.7(2) nm and 612.9(2) nm for the 6s^2\,^1S_0-6s6p\,^3P_1^o, M_J=0 transition and three magic wavelengthes at 1517.68(6) nm, 1036.0(3) nm and 858(12) nm for the 6s^2\,^1S_0-6s6p\,^3P_1^o, M_J=\pm1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.Comment: 13 pages, 3 figure
    • …
    corecore