9 research outputs found

    Prenatal selective serotonin reuptake inhibitor (SSRI) exposure induces working memory and social recognition deficits by disrupting inhibitory synaptic networks in male mice

    Get PDF
    Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Infants born following prenatal exposure to SSRIs have a higher risk for behavioral abnormalities, however, the underlying mechanisms remains unknown. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males. In the medial prefrontal cortex (mPFC), a key region regulating these behaviors, we found augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons. Fast-spiking interneurons in mPFC exhibited enhanced intrinsic excitability and serotonin-induced excitability due to upregulated serotonin (5-HT) 2A receptor (5-HT2AR) signaling. More importantly, the behavioral deficits in prenatal fluoxetine treated mice were reversed by the application of a 5-HT2AR antagonist. Taken together, our findings suggest that alterations in inhibitory neuronal modulation are responsible for the behavioral alterations following prenatal exposure to SSRIs

    A Cross-Cultural Adaptation and Validation of a Second-Language (L2) Motivation Instrument in South Korea

    No full text
    In this research, we tested the psychometrics of a translated and adapted second language learning motivation instrument among Korean English learners. A total of 1373 college students from 9 universities and 11 majors in South Korea responded to the questionnaire. After the content validation, back-translation, and pilot study, 12 factors and 76 items were chosen for further construct validation. The data were then analyzed using Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Through EFA, 11 factors and 55 items were extracted while CFA analysis indicated good fit (CFI > 0.9, SRMR = 0.05, RMSEA < 0.05) of the measurement model. The results of this study showed acceptable psychometrics properties of questionnaire which is culturally and structurally appropriate in a Korean college context

    Enhancement of dendritic persistent Na+ currents by mGluR5 leads to an advancement of spike timing with an increase in temporal precision

    Get PDF
    Abstract Timing and temporal precision of action potential generation are thought to be important for encoding of information in the brain. The ability of single neurons to transform their input into output action potential is primarily determined by intrinsic excitability. Particularly, plastic changes in intrinsic excitability represent the cellular substrate for spatial memory formation in CA1 pyramidal neurons (CA1-PNs). Here, we report that synaptically activated mGluR5-signaling can modulate the intrinsic excitability of CA1-PNs. Specifically, high-frequency stimulation at CA3-CA1 synapses increased firing rate and advanced spike onset with an improvement of temporal precision. These changes are mediated by mGluR5 activation that induces cADPR/RyR-dependent Ca2+ release in the dendrites of CA1-PNs, which in turn causes an increase in persistent Na+ currents (INa,P) in the dendrites. When group I mGluRs in CA1-PNs are globally activated pharmacologically, afterdepolarization (ADP) generation as well as increased firing rate are observed. These effects are abolished by inhibiting mGluR5/cADPR/RyR-dependent Ca2+ release. However, the increase in firing rate, but not the generation of ADP is affected by inhibiting INa,P. The differences between local and global activation of mGluR5-signaling in CA1-PNs indicates that mGluR5-dependent modulation of intrinsic excitability is highly compartmentalized and a variety of ion channels are recruited upon their differential subcellular localizations. As mGluR5 activation is induced by physiologically plausible brief high-frequency stimulation at CA3-CA1 synapses, our results suggest that mGluR5-induced enhancement of dendritic INa,P in CA1-PNs may provide important implications for our understanding about place field formation in the hippocampus

    Adaptive cellular response of the substantia nigra dopaminergic neurons upon age-dependent iron accumulation

    No full text
    Progressive iron accumulation in the substantia nigra in the aged human brain is a major risk factor for Parkinson's disease and other neurodegenerative diseases. Heavy metals, such as iron, produce reactive oxygen species and consequently oxidative stress in cells. It is unclear, however, how neurons in the substantia nigra are protected against the age-related, excessive accumulation of iron. In this study, we examined the cellular response of the substantia nigra against age-related iron accumulation in rats of different ages. Magnetic resonance imaging confirmed the presence of iron in 6-month-old rats; in 15-month-old rats, iron accumulation significantly increased, particularly in the midbrain. Transcriptome analysis of the region, in which iron deposition was observed, revealed an increase in stress response genes in older animals. To identify the genes related to the cellular response to iron, independent of neurodevelopment, we exposed the neuroblastoma cell line SH-SY5Y to a similar quantity of iron and then analyzed their transcriptomic responses. Among various stress response pathways altered by iron overloading in the rat brain and SH-SY5Y cells, the genes associated with topologically incorrect protein responses were significantly upregulated. Knockdown of HERPUD1 and CLU in this pathway increased susceptibility to iron-induced cellular stress, thus demonstrating their roles in preventing iron overload-induced toxicity. The current study details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases

    Lewy Body-like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and α-Synuclein Mutations.

    Get PDF
    OBJECTIVE: We utilized human midbrain-like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α-synuclein (α-syn; SNCA) perturbations to investigate genotype-to-phenotype relationships in Parkinson disease, with the particular aim of recapitulating α-syn- and Lewy body-related pathologies and the process of neurodegeneration in the hMLO model. METHODS: We generated and characterized hMLOs from GBA1-/- and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body-like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol-b-epoxide-treated SNCA triplication hMLOs. RESULTS: We identified for the first time that the loss of glucocerebrosidase, coupled with wild-type α-syn overexpression, results in a substantial accumulation of detergent-resistant, β-sheet-rich α-syn aggregates and Lewy body-like inclusions in hMLOs. These Lewy body-like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α-syn with ubiquitin, and can also be formed in Parkinson disease patient-derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body-like inclusions in hMLOs derived from patients carrying the SNCA triplication. INTERPRETATION: Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild-type α-syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490-505

    Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids

    No full text
    © 2021, The Author(s).Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.11Nsciescopu

    Potassium channel dysfunction in human neuronal models of Angelman syndrome

    No full text
    Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases
    corecore