3,757 research outputs found

    Superradiance in rotating stars and pulsar-timing constraints on dark photons

    Full text link
    In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an instability that spins down black holes. This leads to peculiar gravitational-wave signatures and distribution in the spin-mass plane, which in turn can impose stringent constraints on ultralight fields. Here, we demonstrate that there is an analogous spindown effect for conducting stars. We show that rotating stars amplify low frequency electromagnetic waves, and that this effect is largest when the time scale for conduction within the star is of the order of a light crossing time. This has interesting consequences for dark photons, as massive dark photons would cause stars to spin down due to superradiant instabilities. The time scale of the spindown depends on the mass of the dark photon, and on the rotation rate, compactness, and conductivity of the star. Existing measurements of the spindown rate of pulsars place direct constraints on models of dark sectors. Our analysis suggests that dark photons of mass mV∌10−12m_V \sim 10^{-12} eV are excluded by pulsar-timing observations. These constraints also exclude superradiant instabilities triggered by dark photons as an explanation for the spin limit of observed pulsars.Comment: 13 pages, 4 figure

    Collider Searches for Long-Lived Particles Beyond the Standard Model

    Full text link
    Experimental tests of the Standard Model of particle physics (SM) find excellent agreement with its predictions. Since the original formation of the SM, experiments have provided little guidance regarding the explanations of phenomena outside the SM, such as the baryon asymmetry and dark matter. Nor have we understood the aesthetic and theoretical problems of the SM, despite years of searching for physics beyond the Standard Model (BSM) at particle colliders. Some BSM particles can be produced at colliders yet evade being discovered, if the reconstruction and analysis procedures not matched to characteristics of the particle. An example is particles with large lifetimes. As interest in searches for such long-lived particles (LLPs) grows rapidly, a review of the topic is presented in this article. The broad range of theoretical motivations for LLPs and the experimental strategies and methods employed to search for them are described. Results from decades of LLP searches are reviewed, as are opportunities for the next generation of searches at both existing and future experiments.Comment: 79 pages, 36 figures, submitted to Progress in Particle and Nuclear Physic

    Searching for Dark Absorption with Direct Detection Experiments

    Full text link
    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB for silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.Comment: 18 pages, 5 figures, Figs. 3 and 4 fixed, appendices adde

    Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils

    Full text link
    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter (DM) interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a DM search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (Si and Ge) and Xe targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For DM-electron-scattering searches, neutrinos start being an important background for exposures larger than ~1-10 kg-years in Si and Ge, and for exposures larger than ~0.1-1 kg-year in Xe. For the absorption of bosonic DM (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ~1 keV and again slightly more important in Xe. Treating the neutrinos as a signal, we find that the CNS of B-8 neutrinos can be observed with ~2 sigma significance with exposures of ~2, 7, and 20 kg-years in Xe, Ge, and Si, respectively, assuming there are no other backgrounds. We give an example for how this would constrain non-standard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ~10-100 kg-years in Si or Ge (~1000 kg-years in Xe), and observing CNO neutrinos would require an order of magnitude more exposure. Only Si could potentially detect Be-7 neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.Comment: 17 pages + refs, 15 figures, 4 tables. v3 minor corrections. Scaling of Fig. 9 corrected. Minor corrections to Fig. 4,7,8 and 15. Conclusions unchange

    BBN constraints on universally-coupled ultralight scalar dark matter

    Full text link
    Ultralight scalar dark matter can interact with all massive Standard Model particles through a universal coupling. Such a coupling modifies the Standard Model particle masses and affects the dynamics of Big Bang Nucleosynthesis. We model the cosmological evolution of the dark matter, taking into account the modifications of the scalar mass by the environment as well as the full dynamics of Big Bang Nucleosynthesis. We find that precision measurements of the helium-4 abundance set stringent constraints on the available parameter space, and that these constraints are strongly affected by both the dark matter environmental mass and the dynamics of the neutron freeze-out. Furthermore, we perform the analysis in both the Einstein and Jordan frames, the latter of which allows us to implement the model into numerical Big Bang Nucleosynthesis codes and analyze additional light elements. The numerical analysis shows that the constraint from helium-4 dominates over deuterium, and that the effect on lithium is insufficient to solve the lithium problem. Comparing to several other probes, we find that Big Bang Nucleosynthesis sets the strongest constraints for the majority of the parameter space.Comment: 23 pages + appendices and bibliography, 6 figures, v2: typos corrected, expanded discussion around eq. 4.5, published versio

    Constraints on Ultralight Scalar Dark Matter with Quadratic Couplings

    Full text link
    Ultralight dark matter is a compelling dark matter candidate. In this work, we examine the impact of quadratically-coupled ultralight dark matter on the predictions of Big Bang Nucleosynthesis. The presence of ultralight dark matter can modify the effective values of fundamental constants during Big Bang Nucleosynthesis, modifying the predicted abundances of the primordial elements such as Helium-4. We improve upon the existing literature in two ways: firstly, we take into account the thermal mass acquired by the ultralight dark matter due to its quadratic interactions with the Standard Model bath, which affects the cosmological evolution of the dark matter. Secondly, we treat the weak freeze-out using the full kinetic equations instead of using an instantaneous approximation. Both improvements were shown to impact the Helium-4 prediction in the context of universally-coupled dark matter in previous work. We extend these lessons to more general couplings. We show that with these modifications, Big Bang Nucleosynthesis provides strong constraints of ultralight dark matter with quadratic couplings to the Standard Model for a large range of masses as compared to other probes of this model, such as equivalence principle tests, atomic and nuclear clocks, as well as astrophysical and other cosmological probes.Comment: 16 pages, 3 figure

    Direct costing

    Get PDF
    Call number: LD2668 .R4 1965 Y9

    Direct Detection of sub-GeV Dark Matter with Semiconductor Targets

    Full text link
    Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV){\cal O}(1~\rm{eV}) band gaps allow for ionization signals from dark matter as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcoming several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. The searches we propose will probe vast new regions of unexplored dark matter model and parameter space.Comment: 30 pages + 22 pages appendices/references, 17 figures, website at http://ddldm.physics.sunysb.edu/, v2 added references, minor edits to text and Figs. 2 and 14, version to appear in JHE
    • 

    corecore