9,714 research outputs found

    Interactive Attention Learning on Detection of Lane and Lane Marking on the Road by Monocular Camera Image

    Get PDF
    Vision-based identification of lane area and lane marking on the road is an indispensable function for intelligent driving vehicles, especially for localization, mapping and planning tasks. However, due to the increasing complexity of traffic scenes, such as occlusion and discontinuity, detecting lanes and lane markings from an image captured by a monocular camera becomes persistently challenging. The lanes and lane markings have a strong position correlation and are constrained by a spatial geometry prior to the driving scene. Most existing studies only explore a single task, i.e., either lane marking or lane detection, and do not consider the inherent connection or exploit the modeling of this kind of relationship between both elements to improve the detection performance of both tasks. In this paper, we establish a novel multi-task encoder–decoder framework for the simultaneous detection of lanes and lane markings. This approach deploys a dual-branch architecture to extract image information from different scales. By revealing the spatial constraints between lanes and lane markings, we propose an interactive attention learning for their feature information, which involves a Deformable Feature Fusion module for feature encoding, a Cross-Context module as information decoder, a Cross-IoU loss and a Focal-style loss weighting for robust training. Without bells and whistles, our method achieves state-of-the-art results on tasks of lane marking detection (with 32.53% on IoU, 81.61% on accuracy) and lane segmentation (with 91.72% on mIoU) of the BDD100K dataset, which showcases an improvement of 6.33% on IoU, 11.11% on accuracy in lane marking detection and 0.22% on mIoU in lane detection compared to the previous methods

    Local breaking of four-fold rotational symmetry by short-range magnetic order in heavily overdoped Ba(Fe1−x_{1-x}Cux_{x})2_{2}As2_{2}

    Get PDF
    We investigate Cu-doped Ba(Fe1−x_{1-x}Cux_x)2_2As2_2 with transport, magnetic susceptibility, and elastic neutron scattering measurements. In the heavily Cu-doped regime where long-range stripe-type antiferromagnetic order in BaFe2_2As2_2 is suppressed, Ba(Fe1−x_{1-x}Cux_x)2_2As2_2 (0.145 ≤x≤\leq x \leq 0.553) samples exhibit spin-glass-like behavior in magnetic susceptibility and insulating-like temperature dependence in electrical transport. Using elastic neutron scattering, we find stripe-type short-range magnetic order in the spin-glass region identified by susceptibility measurements. The persistence of short-range magnetic order over a large doping range in Ba(Fe1−x_{1-x}Cux_x)2_2As2_2 likely arises from local arrangements of Fe and Cu that favor magnetic order, with Cu acting as vacancies relieving magnetic frustration and degeneracy. These results indicate locally broken four-fold rotational symmetry, suggesting that stripe-type magnetism is ubiquitous in iron pnictides.Comment: accepted by Physical Review B Rapid Communication
    • …
    corecore