10,097 research outputs found

    Fermion Pairing across a Dipolar Interaction Induced Resonance

    Full text link
    It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named as dipolar interaction induced resonaces (DIIR). In this letter, we study zero-temperature many-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range corrections, despite of the anisotropic nature of dipolar interaction. The pairing energy is as strong as a unitary Fermi gas nearby a magnetic Feshbach resonance. In the high density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing, and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.Comment: 4.5 pages, 4 figures, figures updated, minor changes in tex

    Quantum-classical transition for an analog of double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems

    Get PDF
    We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D2_2 chemical reaction. Thus we demonstrate the quantum--classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.Comment: 5 pages, 2 ps color figures. Accepted for publication in Phys. Rev.

    Análisis de volátiles mediante GC-MS de aceites esenciales de canela extraídos por diferentes métodos

    Get PDF
    Cinnamon essential oil (CEO) was extracted by three different methods: steam distillation (SD), ultrasound-assisted steam distillation (UASD) and microwave-assisted steam distillation (MASD). The volatiles in CEO were separated and identified by gas chromatography–mass spectrometry (GC-MS), and the differences in volatiles among the three different methods were further analyzed through principal component analysis. The results showed that 36 individual volatile components were present in the CEO from the three different methods. In general, the numbers of aldehydes, esters, alcohols, terpenes, aromatics and ketones were 6, 3, 7, 17, 2, and 1, respectively. The most abundant volatile component was determined to be cinnamic aldehyde. The content of total cinnamic aldehydes, which determines the price of CEO, was the highest among the three methods in the UASD sample (85.633%). Moreover, the highest yield (8.33‰) of essential oil was extracted by the UASD method. Therefore, UASD was the best way for CEO extraction in this research and was recommended for future industrial applications.El aceite esencial de canela (AEC) se extrajo mediante tres métodos diferentes: destilación al vapor (DV), destilación al vapor asistida por ultrasonido (DVAU) y destilación al vapor asistida por microondas (DVAM). Los volátiles del AEC se separaron e identificaron mediante cromatografía de gases-espectrometría de masas (GC-MS), las diferencias de los volátiles entre los tres métodos se analizaron adicionalmente a través del análisis de componentes principales. Los resultados mostraron la presencia de 36 componentes volátiles en el AEC mediante los tres métodos diferentes. En general, el número de aldehídos, ésteres, alcoholes, terpenos, aromáticos y cetonas presentes fue de 6, 3, 7, 17, 2 y 1, respectivamente. Se determinó que el componente volátil más abundante era el aldehído cinámico. El contenido de aldehído cinámico total, el cual decide el precio del AEC, en la muestra de DVAU (85,633%), fue el más alto entre tres métodos. Además, el mayor rendimiento (8,33‰) de aceite esencial se encontró mediante el método DVAU. Por lo tanto, DVAU fue la mejor forma de extracción de AEC en esta investigación y se recomienda en futuras aplicaciones industriales

    On the mass relation of a meson nonet

    Get PDF
    It is pointed out that the omission of the effects of the transition between quarkonia or the assumption that the transition between quarkonia is flavor-independent would result in the inconsistent results for the pseudoscalar meson nonet. It is emphasized that the mass relation of the non-ideal mixing meson nonets should incorporate the effects of the flavor-dependent transition between quarkonia. The new mass relations of a meson nonet are presented.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.

    Accurate prediction of protein function using statistics-informed graph networks

    Get PDF
    Understanding protein function is pivotal in comprehending the intricate mechanisms that underlie many crucial biological activities, with far-reaching implications in the fields of medicine, biotechnology, and drug development. However, more than 200 million proteins remain uncharacterized, and computational efforts heavily rely on protein structural information to predict annotations of varying quality. Here, we present a method that utilizes statistics-informed graph networks to predict protein functions solely from its sequence. Our method inherently characterizes evolutionary signatures, allowing for a quantitative assessment of the significance of residues that carry out specific functions. PhiGnet not only demonstrates superior performance compared to alternative approaches but also narrows the sequence-function gap, even in the absence of structural information. Our findings indicate that applying deep learning to evolutionary data can highlight functional sites at the residue level, providing valuable support for interpreting both existing properties and new functionalities of proteins in research and biomedicine

    Modification of Kawai model about the mixing of the pseudoscalar mesons

    Get PDF
    The Kawai model describing the glueball-quarkonia mixing is modified. The mixing of η\eta, η′\eta^\prime and η(1410)\eta(1410) is re-investigated based on the modified Kawai model. The glueball-quarkonia content of the three states is determined from a fit to the data of the electromagnetic decays involving η\eta, η′\eta^\prime. Some predictions about the electromagnetic decays involving η(1410)\eta(1410) are presented.Comment: revtex 8 page

    Mutual-Chern-Simons effective theory of doped antiferromagnets

    Full text link
    A mutual-Chern-Simons Lagrangian is derived as a minimal field theory description of the phase-string model for doped antiferromagnets. Such an effective Lagrangian is shown to retain the full symmetries of parity, time-reversal, and global SU(2) spin rotation, in contrast to conventional Chern-Simons theories where first two symmetries are usually broken. Two ordered phases, i.e., antiferromagnetic and superconducting states, are found at low temperatures as characterized by dual Meissner effects and dual flux quantization conditions due to the mutual-Chern-Simons gauge structure. A dual confinement in charge/spin degrees of freedom occurs such that no true spin-charge separation is present in these ordered phases, but the spin-charge separation/deconfinement serves as a driving force in the unconventional phase transitions of these ordered states to disordered states.Comment: 16 pages, 2 figures; published versio

    Reflected Schr\"odinger Bridge for Constrained Generative Modeling

    Full text link
    Diffusion models have become the go-to method for large-scale generative models in real-world applications. These applications often involve data distributions confined within bounded domains, typically requiring ad-hoc thresholding techniques for boundary enforcement. Reflected diffusion models (Lou23) aim to enhance generalizability by generating the data distribution through a backward process governed by reflected Brownian motion. However, reflected diffusion models may not easily adapt to diverse domains without the derivation of proper diffeomorphic mappings and do not guarantee optimal transport properties. To overcome these limitations, we introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored for generating data within diverse bounded domains. We derive elegant reflected forward-backward stochastic differential equations with Neumann and Robin boundary conditions, extend divergence-based likelihood training to bounded domains, and explore natural connections to entropic optimal transport for the study of approximate linear convergence - a valuable insight for practical training. Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks

    An anatomical study of the origin, structure and insertion of the medial patellofemoral ligament

    Get PDF
    Background: Repair and reconstruction of the medial patellofemoral ligament (MPFL) has been undertaken for the treatment of patellar instability. For successful surgery detailed knowledge of the anatomy of the ligament is required. The aim of this study was to describe the origin, structure and insertion of the MPFL. Materials and methods: We studied cadaveric knees from 30 Chinese adults. We studied the origin, course and insertion of the MPFL. Results: We found that the MPFL was composed of two main strands, superficial and deep. We also found that the insertion of the MPFL into the femur had three common patterns. All three were located between the adductor tubercle and the proximal part of superficial medial collateral ligament. Conclusions: We have added to the anatomical knowledge of the structure of the MPFL. Our study has implications for guiding bone tunnel positioning during MPFL reconstruction surgery. (Folia Morphol 2018; 77, 2: 356–361
    • …
    corecore