16 research outputs found

    Intravenous Injection of GluR2-3Y Inhibits Repeated Morphine-Primed Reinstatement of Drug Seeking in Rats

    No full text
    Studies have demonstrated that the Ī±-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is essential to drug addiction. In this study, we explored the influence of GluR2-3Y, an interfering peptide to prevent the endocytosis of AMPA receptors containing the GluR2 subunit, on morphine-seeking behavior in the rat self-administration model. After self-administration was established, the rats received intravenous injections of GluR2-3Y during the extinction sessions. There were no significant differences in both active and inactive pokes compared to the control group of rats that received GluR2-3S, indicating that GluR2-3Y has no significant influences on the extinction of morphine self-administration. The other two groups of rats were trained, extinguished, and reinstated by repeated morphine priming (respectively, called Prime 1, Prime 2, and Prime 3). Only one intravenous injection of GluR2-3Y was performed before Prime 1. Compared to the control group, GluR2-3Y did not affect Prime 1, but significantly attenuated the morphine-seeking behavior during repeated morphine-primed reinstatement, indicating an inhibitory after effect of GluR2-3Y on morphine-seeking behavior in rats. The long-term depression (LTD) in the nucleus accumbens (NAc) shell was also assessed. Pretreatment with GluR2-3Y altered the ability of LTD induction to the level of that in the naive group, while pretreatment with GluR2-3S had no effects on LTD. Our results demonstrated that the intravenous injection of GluR2-3Y, to block the endocytosis of AMPA receptors, inhibited the reinstatement of morphine-seeking behavior, which may be induced by modulating the neuronal plasticity in the NAc shell of rats

    A Novel CaMKII Inhibitory Peptide Blocks Relapse to Morphine Seeking by Influencing Synaptic Plasticity in the Nucleus Accumbens Shell

    No full text
    Drugs of abuse cause enduring functional disorders in the brain reward circuits, leading to cravings and compulsive behavior. Although people may rehabilitate by detoxification, there is a high risk of relapse. Therefore, it is crucial to illuminate the mechanisms of relapse and explore the therapeutic strategies for prevention. In this research, by using an animal model of morphine self-administration in rats and a whole-cell patch–clamp in brain slices, we found changes in synaptic plasticity in the nucleus accumbens (NAc) shell were involved in the relapse to morphine-seeking behavior. Compared to the controls, the amplitude of long-term depression (LTD) induced in the medium spiny neurons increased after morphine self-administration was established, recovered after the behavior was extinguished, and increased again during the relapse induced by morphine priming. Intravenous injection of MA, a new peptide obtained by modifying Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor “myr-AIP”, decreased CaMKII activity in the NAc shell and blocked the reinstatement of morphine-seeking behavior without influence on the locomotor activity. Moreover, LTD was absent in the NAc shell of the MA-pretreated rats, whereas it was robust in the saline controls in which morphine-seeking behavior was reinstated. These results indicate that CaMKII regulates morphine-seeking behavior through its involvement in the change of synaptic plasticity in the NAc shell during the relapse, and MA may be of great value in the clinical treatment of relapse to opioid seeking

    Effects of long-term sustained naltrexone release on the optic center in opioid-dependent patients Case-control study in four provinces of China

    No full text
    Very little is known about visual functional recovery following long-term naltrexone administration in opioid-dependent patients. In the present study, a portable event-related potential (ERP) working system was utilized to collect and record ERP in opioid-dependent patients and normal controls in visual half-field testing. In addition, the influence of long-term sustained naltrexone release on the visual nervous system was observed in opioid-dependent patients. Results revealed a significant main group effect in reaction time to visual signal stimulations. The reaction time of normal controls was shortest, but longest in opioid-dependent patients. The reaction time of long-term sustained naltrexone release group and compulsory detoxification group was similar to normal controls. A significant main group effect was also observed in P100 latency, and P100 latency in normal controls and the compulsory detoxification group was significantly decreased compared with the opioid-dependent patients. P100 amplitude at the Oz-electrode resulted in a significant main group effect. In particular, normal controls exhibited significant differences compared with long-term sustained release naltrexone and compulsory detoxification groups. These findings demonstrated that long-term sustained naltrexone release effectively ameliorated optic center function and improved visual sensitivity and reactions in opioid-dependent patients

    Mechanism of Action of Bu-Fei-Yi-Shen Formula in Treating Chronic Obstructive Pulmonary Disease Based on Network Pharmacology Analysis and Molecular Docking Validation

    No full text
    Objective. To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods. First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results. In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion. BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD

    A Novel Function of p38-Regulated/Activated Kinase in Endothelial Cell Migration and Tumor Angiogenesis

    Get PDF
    NIH [CA106768, CA131231, RR025744]; NSF in China [30828019, 91029304]The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumor-suppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated

    Effects of long-term sustained naltrexone release on the optic center in opioid-dependent patients Case-control study in four provinces of China

    No full text
    Very little is known about visual functional recovery following long-term naltrexone administration in opioid-dependent patients. In the present study, a portable event-related potential (ERP) working system was utilized to collect and record ERP in opioid-dependent patients and normal controls in visual half-field testing. In addition, the influence of long-term sustained naltrexone release on the visual nervous system was observed in opioid-dependent patients. Results revealed a significant main group effect in reaction time to visual signal stimulations. The reaction time of normal controls was shortest, but longest in opioid-dependent patients. The reaction time of long-term sustained naltrexone release group and compulsory detoxification group was similar to normal controls. A significant main group effect was also observed in P100 latency, and P100 latency in normal controls and the compulsory detoxification group was significantly decreased compared with the opioid-dependent patients. P100 amplitude at the Oz-electrode resulted in a significant main group effect. In particular, normal controls exhibited significant differences compared with long-term sustained release naltrexone and compulsory detoxification groups. These findings demonstrated that long-term sustained naltrexone release effectively ameliorated optic center function and improved visual sensitivity and reactions in opioid-dependent patients

    Topography of transcriptionally active chromatin in glioblastoma

    No full text
    Molecular profiling of the most aggressive brain tumor glioblastoma (GBM) on the basis of gene expression, DNA methylation, and genomic variations advances both cancer research and clinical diagnosis. The enhancer architectures and regulatory circuitries governing tumor-intrinsic transcriptional diversity and subtype identity are still elusive. Here, by mapping H3K27ac deposition, we analyze the active regulatory landscapes across 95 GBM biopsies, 12 normal brain tissues, and 38 cell line counterparts. Analyses of differentially regulated enhancers and super-enhancers uncovered previously unrecognized layers of intertumor heterogeneity. Integrative analysis of variant enhancer loci and transcriptome identified topographies of transcriptional enhancers and core regulatory circuitries in four molecular subtypes of primary tumors: AC1-mesenchymal, AC1-classical, AC2-proneural, and AC3-proneural. Moreover, this study reveals core oncogenic dependency on super-enhancerā€“driven transcriptional factors, long noncoding RNAs, and druggable targets in GBM. Through profiling of transcriptional enhancers, we provide clinically relevant insights into molecular classification, pathogenesis, and therapeutic intervention of GBM.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)National Research Foundation (NRF)Published versionThe discovery of ETC-168 (also known as AUM168 in AUM Biosciences) was financially supported by the Biomedical Sciences Institutes and Joint Council Office (JCO Project 11 03 FG 07 05), Agency for Science, Technology and Research, Singapore. This work is funded by the NIH (R01-CA200992-04 to H.P.K., and R35CA197628 and R01CA213138 to M.M.), the Howard Hughes Medical Institute (HHMI-55108547 to M.M.), the Singapore Ministry of Healthā€™s National Medical Research Council (NMRC) under its Singapore Translational Research Investigator Award (NMRC/STaR/0021/2014 to H.P.K.), the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2017-T2-1-033 to H.P.K.), the NMRC Centre Grant Programme awarded to the National University Cancer Institute of Singapore (NMRC/CG/012/2013 and CGAug16M005), the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiatives, the RNA Biology Center at the Cancer Science Institute of Singapore (MOE2014-T3-1-006), the NMRC Open Fund Young Individual Research Grants (MOH-OFYIRG18May-0001 to L.X. and MOH-OFYIRG19Nov-0016 to Y.C.), and the NMRC Translational and Clinical Research Flagship Programme grant (NMRC/TCR/016-NNI/2016 to B.T.A. and C.T.). In addition, this work is supported by the NUS Center for Cancer Research, Cancer Programme under Translational Research Programmes, Yong Loo Lin School of Medicine, NUS (NUHSRO/2020/122/MSC/07/Cancer), a Seed Funding Program within the NCIS Centre Grant, an NCIS Yong Siew Yoon Research grant through donations from the Yong Loo Lin Trust, and philanthropic donations from the Melamed family, and Valerie Baker Fairbank who also gave us encouragement. J.C. is supported by the Start-up Grant of HZNU (4125C5021820470), National Natural Science Foundation of China (81802338 and 82072646), and Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (LR21H160001). Y.H. is supported by Jiangsu Province Commission of Health and Family Planning Research funding (H2017064) and Suzhou Science and Technology Development Plan (SS201864). M.M. is a Howard Hughes Medical Institute (HHMI) Faculty Scholar

    Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity.

    Full text link
    Estrogen receptor Ī± (ERĪ±) is a prime target for the treatment of ER-positive (ER+) breast cancer. Despite the development of several effective therapies targeting ERĪ± signaling, clinical resistance remains a major challenge. In this study, we report the discovery of a new class of potent and orally bioavailable ERĪ± degraders using the PROTAC technology, with ERD-3111 being the most promising compound. ERD-3111 exhibits potent in vitro degradation activity against ERĪ± and demonstrates high oral bioavailability in mice, rats, and dogs. Oral administration of ERD-3111 effectively reduces the levels of wild-type and mutated ERĪ± proteins in tumor tissues. ERD-3111 achieves tumor regression or complete tumor growth inhibition in the parental MCF-7 xenograft model with wild-type ER and two clinically relevant ESR1 mutated models in mice. ERD-3111 is a promising ERĪ± degrader for further extensive evaluations for the treatment of ER+ breast cancer.http://deepblue.lib.umich.edu/bitstream/2027.42/177662/2/Discovery of ERD-3111.pdfPublished onlin
    corecore