936 research outputs found

    Interaction of a surface acoustic wave with a two-dimensional electron gas

    Full text link
    When a surface acoustic wave propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is largely dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.Comment: 3 figure

    Electron density stratification in two-dimensional structures tuned by electric field

    Full text link
    A new kinetic instability which results in formation of charge density waves is proposed. The instability is of a purely classical nature. A spatial period of arising space-charge and field configuration is inversely proportional to electric field and can be tuned by applied voltage. The instability has no interpretation in the framework of traditional hydrodynamic approach, since it arises from modulation of an electron distribution function both in coordinate and energy spaces. The phenomenon can be observed in thin 2D nanostructures at relatively low electron density.Comment: 4 pages, 2 figure

    Filtered Cathodic Vacuum Arc Deposition of Porous and Nanostructured Carbon and Hybrid C-Mo Thin Films for Fuel Cell Membranes

    Get PDF
    In our proton exchange membrane (PEM) fuel cells, the electrolyte is a catalyst platinum (Pt) coated nafion membrane. In order to increase the electrochemically active catalyst area to enhance the cell performance but without sacrificing the electrical conductivity of the membrane, carbon thin films were deposited onto the membrane by using the filtered cathodic vacuum arc deposition (FCVAD) technique. With varying the deposition conditions, it was possible to form porous carbon films and nanoisland and nanorod structure surface which increased the catalyst area when a higher He working gas pressure and a low number of pulses were used. Based on this result, hybrid C-Mo thin films were deposited for further enhancing the Pt catalytic effect. Under the varied deposition conditions, the surface morphology and C and Mo grain sizes of the hybrid thin films were measured and their relations with the catalytic performance were studied. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3486

    The current of fermions scattered off a bubble wall

    Full text link
    Proceeding from WKB quantization conditions, we derive a semiclassical expression for the current of fermions scattered off a propagating bubble wall in the presence of longitudinal gauge field. It agrees with the expression used by Nasser and Turok in semiclassical analysis of instability of electroweak bubble walls with respect to longitudinal ZZ condensation. We discuss the resulting dispersion relation for longitudinal ZZ field and show that light species are important for the analysis of stability, because of their large contribution to plasma frequency.Comment: 7 pages, latex, no figures; misprint in eq.(12) correcte

    Symplectic structures associated to Lie-Poisson groups

    Full text link
    The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups.Comment: 30 page

    Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation

    Full text link
    A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g. in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behaviour of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, cross-over regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial.Comment: 15 pages, ReVTEX, no figure

    On modulational instability and energy localization in anharmonic lattices at finite energy density

    Full text link
    The localization of vibrational energy, induced by the modulational instability of the Brillouin-zone-boundary mode in a chain of classical anharmonic oscillators with finite initial energy density, is studied within a continuum theory. We describe the initial localization stage as a gas of envelope solitons and explain their merging, eventually leading to a single localized object containing a macroscopic fraction of the total energy of the lattice. The initial-energy-density dependences of all characteristic time scales of the soliton formation and merging are described analytically. Spatial power spectra are computed and used for the quantitative explanation of the numerical results.Comment: 12 pages, 7 figure

    Optical metrics and birefringence of anisotropic media

    Get PDF
    The material tensor of linear response in electrodynamics is constructed out of products of two symmetric second rank tensor fields which in the approximation of geometrical optics and for uniaxial symmetry reduce to "optical" metrics, describing the phenomenon of birefringence. This representation is interpreted in the context of an underlying internal geometrical structure according to which the symmetric tensor fields are vectorial elements of an associated two-dimensional space.Comment: 24 pages, accepted for publication in GR

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur
    corecore