228 research outputs found

    Hierarchical organization of consumer reviews for products and its applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Structural response analysis of the hydraulic pneumatic tensioner under its local failure based on a fully coupled TLP-TTR system

    Get PDF
    The presented work studied the structural response of the hydraulic pneumatic tensioner (HPT) in a TLP-TTR system with failure of the tensioner cylinder. A fully coupled hull-tendon-TTR-tensioner model was established in AQWA to simulate the failure numerically. A specific HPT was modeled by considering 4 cylinders and the real-time stroke of each piston. A set of formulas was proposed to calculate the real-time tension including different components, e.g. Stribeck friction, in the tensioner. A riser array including 6 independent production TTRs and their tensioners was also modeled. The production TTR model was stacked up by different specific riser joints. The hydrodynamic force acting on the hull was obtained by using the 3D potential flow theory. The real-time tensions on different tensioner cylinders were obtained by using an in-house-developed program. Different environmental conditions, including a calm sea, regular waves, and extreme sea states, were considered in the simulations. In the results, the behaviors of different cylinders of the failed tensioner were presented. The results show that when an accidental local failure of the HPT occurs, the tension and stroke responses are still far from the designed-limits to induce a progressive failure

    Three-dimensional semi-analytical solutions for the transient response of functionally graded material cylindrical panels with various boundary conditions

    Get PDF
    In this paper, a 3D semi-analytical method is proposed by introducing the Durbin's Laplace transform, as well as its numerical inversion method, state space approach and differential quadrature method to analyse the transient behaviour of functionally graded material cylindrical panels. Moreover, to investigate the effectiveness of the proposed semi-analytical solution, four boundary conditions are used to undertake the analyses. Comparing the proposed approach with other theoretical methods from the literatures, we see better agreements in the natural frequencies. Besides, the semi-analytical solution acquires nearly the same transient response as those obtained by ANSYS. Convergence studies indicate that the proposed method has a quick convergence rate with growing sample point numbers along the length direction, so do layer numbers increase along the radial direction. The effects of thickness/outer radius ratio, length/outer radius ratio and functionally graded indexes are also studied. When carbon nanotube is added to functionally graded material cylindrical panel, the composite structures have been reinforced greatly. The proposed 3D semi-analytical method has high accuracy for the analysis of composite structures. This study can serve as a foundation for solving more complicated environments such as fluid–structure interaction of flexible pipe or thermal effect analysis of functionally graded material in aerospace field
    corecore