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Three-dimensional semi-analytical
solutions for the transient response of
functionally graded material cylindrical
panels with various boundary conditions

Xu Liang1, Yu Deng1, Xue Jiang2 , Zeng Cao1, Yongdu Ruan1 ,

Jianxing Leng1, Titao Wang1 and Xing Zha1

Abstract

In this paper, a 3D semi-analytical method is proposed by introducing the Durbin’s Laplace transform, as well as its

numerical inversion method, state space approach and differential quadrature method to analyse the transient behaviour

of functionally graded material cylindrical panels. Moreover, to investigate the effectiveness of the proposed semi-

analytical solution, four boundary conditions are used to undertake the analyses. Comparing the proposed approach

with other theoretical methods from the literatures, we see better agreements in the natural frequencies. Besides, the

semi-analytical solution acquires nearly the same transient response as those obtained by ANSYS. Convergence studies

indicate that the proposed method has a quick convergence rate with growing sample point numbers along the

length direction, so do layer numbers increase along the radial direction. The effects of thickness/outer radius ratio,

length/outer radius ratio and functionally graded indexes are also studied. When carbon nanotube is added to

functionally graded material cylindrical panel, the composite structures have been reinforced greatly. The proposed

3D semi-analytical method has high accuracy for the analysis of composite structures. This study can serve as a

foundation for solving more complicated environments such as fluid–structure interaction of flexible pipe or thermal

effect analysis of functionally graded material in aerospace field.
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Introduction

Functionally graded materials (FGMs), whose property gradient is caused by chemical composition, atomic order
or microstructure, have attracted much attention of many groups.1–4 Because of their advantageous stiffness-to-
weight ratio and strength-to-weight ratio as well as their tendency for high performance, FGM structures play
important roles in ocean engineering, fuselage and submarine components. Therefore, the research on the dynam-
ic response of FGM structure is of great significance to the development of the frontier in aerospace engineering,
civil engineering, ocean engineering, etc.

Over the course of history, various plates/shells theories have been used to analyse FGM structures. Using the
framework of the non-local strain gradient theory and Hamilton principle, Li et al.5 deduced the governing
equations and analysed the natural frequencies of FGM beam. Parida and Mohanty6 investigated the free vibra-
tion of FGM plates by the use of higher order shear deformation plate theory (HSPT) on the foundation of
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Winkler–Pasternak. To draw a more valid conclusion, Cheng and Batra7 derived equations for an FG plate whose
responses were retrieved by either the FSDT or third-order shear deformation theory (TSDT). Based on two kinds
of shell theories and Higher-order shear theory, Frikha and Dammak8 studied the nonlinear mechanical response
of FG shells. Similarly, Yaghoubshahi et al.9 deduced the governing equations of laminated plate problems under
static load by using HSDT and virtual work principle. Quan and Duc10 investigated the dynamic response and
nonlinear vibration of FGM thick shells through the use of third-order shear deformation shell theory.
Mantari et al.11 developed a new HSDT for elastic composite/sandwich plates and shells. In the case of tangential
stress-free boundary conditions, the theory provides a holistic explanation for a full distribution of the transverse
shear strains. Consequently, a shear correction factor was not needed. Generally speaking, the CPT is
appropriate for the analysis of thin structures, while HSDT and TSDT go well with medium thick and thick
structures. However, such theories always ignore some stress variables or displacements and consequently lead to
mathematical mistakes.12

To get minimize potential problems, state space method (SSM) is utilized throughout the experiment.
The advantages of SSM are that all the fundamental equations of three-dimensional (3D) elasticity are exactly
satisfied and all nine elastic variables are taken into account.13 Without any assumption of stress and displace-
ment, SSM is efficient at dealing with the static and dynamic problems of FGM structures. Zeng et al.14 inves-
tigated the natural frequencies of FG circular arches by employing the Fourier series expansion and state space
formulation. Xu15 studied the fundamental response of annular, circular and sectorial plates, and established new
state space formulations by adding two stress functions and extra displacement functions. The numerical results
were very parallel with those of FEM. Furthermore, to consider various boundary conditions, the differential
quadrature method (DQM) is effectively used to discretize the governing equations.16 Based on the 3D elasticity
theory, Alibeigloo et al.17,18 analysed free vibration of FG cylindrical plates and shells embedded in piezoelectric
layers by using SSM and DQM. Nie and Zhong19 proposed a semi-analytical method which integrated the SSM
and DQM to analyse the free vibration of FG annular sectorial plates. Besides, many analytical methods are
also used to solve the governing equations of FGM structures such as variational iteration method20,21 and
perturbation method.22,23 Odibat and Momani24 compared these two methods when solving different types of
differential equations of fractional order. Although the mentioned theories and methods can obtain good results,
the above work focused on the statics or free vibration of composite structures.

Hence, some researchers have been investigating the dynamic vibration of FGM structures by other kinds of
methods. Based on the hybrid numerical method (HNM) combining with a reduced-basis method (RBM), Huang
and Huang25 investigated the real-time transient vibration of FGM plates. Zhou et al.26 studied the transient
thermoelastic response of FG rectangular plates by utilising state space approach, numerical Laplace transfor-
mations and shooting methods. Nezhadi et al.27 studied the response of FG shells with impulse loads by inte-
grating the Hamilton’s principle and Rayleigh–Ritz method. Frikha et al.28 analysed the dynamic behaviour of
FG carbon nanotubes-reinforced composite shell structures. Based on the elasticity theory and Hamilton’s prin-
ciple, the transient response in thermal environment of multi-layered FG shells was presented by Malekzadeh
et al.29 Selahi et al.30 developed a hybrid method by using 3D elasticity theory for dynamic behaviour of FG
truncated conical shell, with DQM discretizing the governing equations in both spatial and time domains. Liang
et al.31t a investigated the 3D transient response of FGM rectangular plates, annular sector plates and cylindrical
shells under various boundary conditions. The responses were calculated by a proposed approach combining the
SSM with DQM and Durbin’s34 numerical method.

As mentioned above, the dynamics of FGM structures have garnered a lot of attention from many researchers.
But to the author’s best knowledge, the dynamic response of the FGM cylindrical panels using this 3D semi-
analytical method have not been found yet, especially studies considering various boundary conditions. Besides,
there is no reliable comparative verification of dynamics in other researchers’ work. On those circumstances, this
paper gives trustworthier comparative solutions with nature frequencies in other literatures and transient behav-
iours by ANSYS. In the recent years, many analytical and semi-analytical methods, such as integral transform35

and unified Jacobi–Ritz method,36 have been applied for solving the vibration problems. The work in this paper
can also serve as a benchmark of transient vibration analysis of FGM structures.

The paper is organised in the following manner. The backgrounds for the static and dynamic researches of
FGM structures are provided. Then, the problem description is introduced by the three-dimensional linear
elasticity theory. A concise introduction of the relevant fundamental methods is given next. Governing equations
for four different boundary conditions are presented based on the SSM, and the semi-analytical solutions are
derived based on the DQM and Durbin’s approach. In contrast to the finite element analysis (FEA), the proposed
method is validated, and the influences of boundary conditions, geometric, material, and computational
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parameters are also studied. The research of carbon nanotube (CNT) reinforced FGM composite structures is

investigated. The conclusions are then presented in the last section.

Problem description

A linear elastic FGM cylindrical panel is established, and its length l, central angle a, outer radius a and inner

radius b are all considered. The model and the coordinate system are depicted in Figure 1. The mechanical

material properties of the panel vary gradually along the radial r direction in an arbitrary manner. By extending

the laminated plate model to FGM panel, the FGM panel consists of K-layers of graded materials along the

radial directions.
Based on the small deformation assumption, the second order of strain is negligible. Assuming the material

of each layer is orthotropic among the coordinate planes, the linear stress–displacement relationships for an

arbitrary layer can be expressed as the following matrix form

rr
rh
rz
szh
srz
srh

2
6666666664

3
7777777775
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666666664

3
7777777775

@rur

ður þ @huhÞ=r
@zuz

@zuh þ @huz=r

@zur þ @ruz

ð@hur � uhÞ=rþ @ruh

2
6666666664

3
7777777775

(1)

where C11, C12, C13, C22, C23, C33, C44, C55, C66 are the elastic stiffness coefficients; rr, rh, rz are the radial stress
components; szh, srz, srh are the shear stress components; ur, uh, uz are the displacements components.

q is the mass density. With the absence of body force, the equilibrium equation is given as

@zrz þ srz
r
þ @rsrz þ @hszh

r
� q@2

t uz ¼ 0;

@hrh
r

þ 2srh
r

þ @rsrh þ @zszh � q@2
t uh ¼ 0;

@rrr þ rr � rh
r

þ @zsrz þ @hsrh
r

� q@2
t ur ¼ 0

(2)

Four different boundaries are set in z¼ 0 or l. All of them can be written as
Clamped (z¼ 0)–Clamped (z¼ l)

at z ¼ 0; ur ¼ uh ¼ uz ¼ 0 (3)

at z ¼ l; ur ¼ uh ¼ uz ¼ 0 (4)

Figure 1. FGM cylindrical panel and coordinate system.
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Clamped (z¼ 0)–Simply supported (z¼ l)

at z ¼ 0; ur ¼ uh ¼ uz ¼ 0 (5)

at z ¼ l; rz ¼ ur ¼ uh ¼ 0 (6)

Clamped (z¼ 0)–Free (z¼ l)

at z ¼ 0; ur ¼ uh ¼ uz ¼ 0 (7)

at z ¼ l; rz ¼ szh ¼ srz ¼ 0 (8)

Simply supported (z¼ 0)–Simply supported (z¼ l)

at z ¼ 0; rz ¼ ur ¼ uh ¼ 0 (9)

at z ¼ l; rz ¼ ur ¼ uh ¼ 0 (10)

The boundary conditions at inner (r¼ b) and outer (r¼ a) surfaces are given as

at inner surface r ¼ bð Þ; rr ¼ frb; srh ¼ fhb; and srz ¼ fzb (11)

at outer surface r ¼ að Þ; rr ¼ fra; srh ¼ fha; and srz ¼ fza (12)

Numerical method

An efficient numerical inversion for Laplace transform

The Laplace transform, which is very efficient in dealing with complex differential equations, is widely used in

structural dynamics.37,38 To seek a solution to the complicated dynamic problems, Durbin’s34 numerical inversion

method was proposed which always generates almost the same results as that given by analytical inversion

methods in a short time range. The numerical inversion method for Laplace transform can be expressed by the

following formula.34

fðt*Þ ¼ 2 expðat*Þ
T

~fðaÞ
2

þ
XK
k¼1

Re ~fðaþ kpi=TÞ
h i

cosðkpt*=TÞ
( )

(13)

where a¼ 5/T, T¼ 2�Td, K is a sufficient number, and Td is the observation period.

Differential quadrature method

The function of DQM is to discretise the fundamental equations by turning the partial derivative to polynomials

along the z direction. Based on the high-order polynomials, the weighted coefficients of DQM are computed by a

series of mathematical formulation.39 Now, assuming ~�f r
*
; z
*
; s
*

� �
is a continuous function, the i-th order partial

derivative along the z direction can be expressed by a sum of values in the spatial domain

@i~�f r
*
; z
*

m; s
*

� �
@z

*i
¼
XM
n¼1

AðiÞ
mn

~�f r
*
; z
*

n; s
*

� �
(14)

where m is from 1 to sampling points M; n is from 1 to M�1; AðiÞ
mn is the weighting coefficients.
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Semi-analytical solution

According to the stress–displacement relationships and equilibrium differential equations, a semi-analytical

method which requires employing the SSM and DQM is proposed to solve the governing equations under various

boundary conditions. To obtain the natural frequencies and transient response of the cylindrical panel, the SSM

and one-dimensional differential quadrature rule are used to establish a linear eigenvalue system, firstly along the

radial direction and then established along the length direction.

Normalization

To simplify the calculation, the variables can be normalised in below

C
*

ij

r*r

r*h

r*z

s*rh
s*zh
s*rz

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ 1

C33

Cij

rr
rh
rz
srh
szh
srz

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

;

r
*

z
*

t
*

s
*

u
*

r

u
*

h

u
*

z

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼ 1
a

1
l

c
a

a
c

1
a

1
a

1
a

n oT

r

z

t

s

ur

uh

uz

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

T

(15)

where i, j¼ 1,2,. . .,6, and c is the wave velocity.

c ¼ C33=qð Þ1=2 (16)

To separate the variable h, Fourier series are employed to expand the displacement and stress components into

a form of trigonometric function.32 The wave number is j, the panel’s sector angle is a.

r*rðr*; h; z*; tÞ
u
*

rðr*; h; z*; tÞ
u
*

hðr*; h; z*; tÞ
u
*

zðr*; h; z*; tÞ
s*rzðr*; h; z*; tÞ
s*rhðr*; h; z*; tÞ
r*hðr*; h; z*; tÞ
r*zðr*; h; z*; tÞ
s*zhðr*; h; z*; tÞ

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

¼
X1
j¼0

�rrðr*; z*; tÞsin jph=að Þ
�urðr*; z*; tÞsin jph=að Þ
�uhðr*; z*; tÞcos jph=að Þ
�uzðr*; z*; tÞsin jph=að Þ
�srzðr*; z*; tÞsin jph=að Þ
�srhðr*; z*; tÞcos jph=að Þ
�rhðr*; z*; tÞsin jph=að Þ
�rzðr*; z*; tÞsin jph=að Þ
�szhðr*; z*; tÞcos jph=að Þ

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

(17)

By substituting equations (1) and (2), governing equation can be obtained in the form of state space approach.

After employing the Fourier expansion and Laplace transform, the fundamental equations are derived as

d~�rr

d r
! ¼ q

!
s
!2 þ g2

r
!2

� �
~�urþ ag3

lr

@ ~�u

@ z
! � jpg2 ~�uh

a r
!2

� g1�rr

r
! � a@~�srz

l@ z
! þ jp~�srh

a r
!

d~�ur

d r
! ¼ ~�rr

C
!

11

� C
!

12

C
!

11 r
!
~�ur þ jpC

!
12

a r
!
C
!

11

~�uh � aC
!

13

lC
!

11

@ ~�uz

@ z
!
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d~�uh

d r
! ¼ �jp~�ur

a r
! þ ~�uh

r
! þ ~�srh

C
!

66

d~�uz

d r
! ¼ � a@ ~�ur

l@ z
! þ ~�srz

C
!

55

d~�srz
d r
! ¼ � ag3@ ~�ur

l r
!
@ z
! þ q

!
s
!2 � a2g4@

2

l2@ z
!2

þ j2p2C
!

44

a2 r
!2

 !
~�uz þ ajpg5@ ~�uh

la r
! � aC

!
13@ ~�rr

lC
!

11@ z
! � ~�srz

r
!

d~�srh
d r
! ¼ � jpg2 ~�ur

a r
!2

þ ajpg5@ ~�uz
la r

!
@ z
! þ q

!
s
!2 � a2C

!
44@

2

l2@ z
!2

þ j2p2g
!

2

a2 r
!2

 !
~�uh � jpC

!
12 ~�rr

a r
!
C
!

11

� 2~�srh
r
!

(18)

where

g1¼ 1� C
*

12

C
*

11

; g2 ¼ C
*

22 � C
*2

12

C
*

11

; g3 ¼ C
*

23 � C
*

12C
*

13

C
*

11

; g4 ¼ C
*

33 � C
*2

13

C
*

11

;

g5 ¼ �C
*

12C
*

13 þ C
*

11 C
*

23 þ C
*

44

� �h i
=C

*

11

(19)

The other three variables can be determined by

~�rh ¼ g2
r
*
~�ur þ ag3

l

@ ~�uz

@z
*
� jpg2

ar
*

~�uh þ C
*

12

C
*

11

~�rr;

~�rz ¼ g3
r
*
~�ur þ ag4

l

@ ~�uz

@z
*
� jpg3

ar
*

~�uh þ C
*

13

C
*

11

~�rr;

~�szh ¼ jpC
*

44

ar
*

~�uz þ aC
*

44

l

@ ~�uh

@z
*

(20)

As M is the sum of sample points, m-th is the location of calculating the sample point. By applying DQM on
equations (18) and (20), the new state space equations can be rewritten as shown below

d~�rrm

dr
*

¼ � a

l

XM
n¼1

A 1ð Þ
mn

~�srzn þ ag3
lr
*

XM
n¼1

A 1ð Þ
mn

~�uzn þ s
*2
q
* þ g2

r
*2

� �
~�urm

� jpg2 ~�uhm

ar
*2

� g1
~�rrm

r
*

þ jp~�srhm
ar
*

;

d~�urm

dr
*

¼ ~�rrm

C
*

11

� C
*

12

r
*
C
*

11

~�urm þ jpC
*

12

ar
*
C
*

11

~�uhm � aC
*

13

lC
*

11

XM
n¼1

A 1ð Þ
mn

~�uzn;

d~�uhm

dr
*

¼ �jp
~�urm

ar
*
þ ~�uhm

r
*

þ ~�srhm

C
*

66

;
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d~�uzm

dr
*

¼ � a

l

XM
n¼1

A 1ð Þ
mn

~�urn þ
~�srzm

C
*

55

;

d~�srzm
dr

*
¼ � ag3

lr
*

XM
n¼1

A 1ð Þ
mn

~�urn � a2g4
l2

XM
n¼1

A 2ð Þ
mn

~�uzn þ ajpg5
lar

*

XM
n¼1

A 1ð Þ
mn

~�uhn

� ~�srzm
r
*

� aC
*

13

lC
*

11

XM
n¼1

A 1ð Þ
mn

~�rrn þ s
*2
q
* þ j2p2C

*

44

a2r
*2

 !
~�uzm;

d~�srhm
dr

*
¼ ajpg5

lar
*

XM
n¼1

A 1ð Þ
mn

~�uzn � jpg2 ~�urm

ar
*2

þ s
*2
q
* þ j2p2g2

a2r
*2

 !
~�uhm

� 2~�srhm
r
*

� jpC
*

12

ar
*
C
*

11

~�rrm � a2C
*

44

l2

XM
n¼1

A 2ð Þ
mn

~�uhn

(21)

For the m-th sample point, the other three variables can be determined by

~�rhm ¼ ag3
l

XM
n¼1

A 1ð Þ
mn

~�uzn þ g2 ~�urm
r
*

� jpg2 ~�uhm
ar
*

þ C
*

12

C
*

11

~�rrm;

~�rzm ¼ ag4
l

XM
n¼1

A 1ð Þ
mn

~�uzn þ g3 ~�urm
r
*

� jpg3 ~�uhm
ar
*

þ C
*

13

C
*

11

~�rrm;

~�szhm ¼ aC
*

44

l

XM
n¼1

A 1ð Þ
mn

~�uhn þ jpC
*

44

ar
*

~�uzm

(22)

To apply the DQM, Laplace transform and Fourier series on equations (3) to (10), the cylindrical panel’s
boundary conditions are given as

C-C

z ¼ 0; ~�ur1 ¼ ~�uh1 ¼ ~�uz1 ¼ 0 (23)

z ¼ l; ~�urM ¼ ~�uhM ¼ ~�uzM ¼ 0 (24)

C-S

z ¼ 0; ~�ur1 ¼ ~�uh1 ¼ ~�uz1 ¼ 0 (25)

z ¼ l; ~�rzM ¼ ~�uhM ¼ ~�urM ¼ 0 (26)

C-F

z ¼ 0; ~�ur1 ¼ ~�uh1 ¼ ~�uz1 ¼ 0 (27)

z ¼ l; ~�rzM ¼ ~�szhM ¼ ~�srzM ¼ 0 (28)

S-S

z ¼ 0; ~�rz1 ¼ ~�uh1 ¼ ~�ur1 ¼ 0 (29)

z ¼ l; ~�rzM ¼ ~�uhM ¼ ~�urM ¼ 0 (30)
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Similarly, for the inner and outer surface, the transformed boundaries are derived as

r ¼ b; ~�rrb ¼~�f rb; ~�srhb ¼~�f hb; and ~�srzb ¼~�f zb (31)

r ¼ a; ~�rra ¼~�f ra; ~�srha ¼~�f ha; and ~�srza ¼~�f za (32)

where ~�rrb ¼f~�rr1; . . . ~�rrMgr¼b
T, ~�f ha ¼f~�fh1; . . . ~�fhMgr¼a

T,. . .

Semi-analytical solution

As shown in equation (21), the differential equation with so many variables is too complex to be solved by
analytical approaches. Hence, for the sake of simplification, an approximate method is performed by introducing
a radial local coordinate nk, an approximation nk/Rk�1 is considered as a thin cylindrical panel in each layer. nk is
located at the centre of k-th layer.40

1

r
*
¼ 1� kkð Þ

Rk
;

1

r
*
¼ 1� 2kkð Þ

R2
k

(33)

where nk¼ r�Rk and kk¼ nk/Rk. According to the assumption, kk can be neglected. Hence, equation (21) is
supposed to be derived by the form of matrix

d ~�QðkÞ
dk

¼ H � ~�QðkÞ (34)

where ~�Q ¼ f~�rr; ~�ur; ~�uh; ~�uz; ~�srz; ~�srhg, ~�rr ¼f~�rr1; . . . ~�rrMgT, ~�ur ¼f~�ur1; . . . ~�urMgT,. . . The constitution of matrix H can
be found in Appendix 1. After applying different boundary conditions to the equations (23) to (30), the various H
is given in Appendix 2.

The expression of equation (34) is supposed to be

~�QðkÞ ¼ exp Hk k� kk�1ð Þ½ � � ~�Qðkk�1Þ: �h

2Rk
� k � h

2Rk

� �
(35)

Equation (35) at k ¼ kk yields

~�QðkkÞ ¼ exp Hhkð Þ � ~�Qðkk�1Þ (36)

where hk is the thickness of k-th layer.
Subsequently

~�Qðkkþ1Þ ¼ exp Hkþ1hkþ1ð Þ � ~�QðkkÞ ¼ exp Hkþ1hkþ1ð Þ � exp Hkhkð Þ � ~�Qðkk�1Þ (37)

For all K layers have the same behaviour, the FGM cylindrical panel’s state vectors at the outer surface can be
determined by the inner surface

~�Q bð Þ ¼ T a� bð Þ � ~�Q að Þ (38)

where

T hð Þ ¼
Y1
k¼K

exp Hkhkð Þ (39)

T hð Þ¼ Tij
6�6

ði; j ¼ 1; 2; . . . ; 6Þ (40)
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At the outer and inner surfaces, the boundaries equations (31) and (32) are applied into equation (38)

~�f r
~�f z
~�f h

8><
>:

9>=
>;

r¼b

¼
T11 T12 T13

T51 T52 T53

T61 T62 T63

T14 T15 T16

T54 T55 T56

T64 T65 T66

2
4

3
5

~�f r
~�ur

~�uh
~�uz
~�f z
~�f h

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

r¼a

(41)

where

~�f r ¼ ~�fr1; . . . ;
~�frM

n oT

; ~�f z ¼ ~�fz1; . . . ;
~�fzM

n oT

; ~�f h ¼ ~�fh1; . . . ;
~�fhM

n oT

Numerical results

Firstly, compared with data obtained by other theoretical methods, the natural frequencies of a clamped FGM

cylindrical panel are investigated for different functionally graded index c. Subsequently, the displacements along

r direction obtained by the proposed method are compared with FEM to validate the proposed method. And

then, the research regarding convergence are carried out for different cases. In conclusion, this allows the effects of

cylindrical panel’s geometric size and functionally graded index c to be investigated.

Nature frequencies study

In comparison with previous results in literature,41,42 the natural frequencies of the FGM cylindrical panel are

investigated (Figure 2). The geometric size of the cylindrical panel is L/h¼ 10, L/b¼ 0.1 with clamped boundary

condition varies in the functionally graded index c. And x is its chord length. The material properties of this FGM

panel are stainless steel (SUS304) and silicon nitride (Si3N4). The constituents of the two kind of material are

described in Table 1.
In Table 2, non-dimensional frequency parameter is given by x� ¼ xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmh=D�

m

p
in which

D�
m ¼ Emh

3=12ð1� l2mÞ.
The purpose of free vibration analysis is to validate the reliability of the proposed approach. As we know, the

boundary conditions, wave number and geometric size are the main factors to decide the values of natural

Figure 2. Geometry of FGM cylindrical panel.
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frequency. In this section, the boundary condition is simply supported and wave number i is equal to 1. The results

of the first mode frequencies are shown in Table 2 for different functionally graded index c along with those of

Yang and Shen42 and Pradyumna and Bandyopadhyay.41 It is indicated that the values obtained by the proposed

method agree with Yang and Shen’s42 and Pradyumna and Bandyopadhyay’s41 methods.

Transient responses study

In order to further demonstrate the accuracy of the proposed approach, its displacements along the r direction are

compared with the results by commercial software ANSYS. The cases with various variables are given in Table 3.
For the orthotropic properties, the stiffness coefficient and mass density are supposed to change following the

variation law along the r direction. By applying exponential law, the material properties can be expressed as

fCij; qg ¼ fĈij; q̂g � exp c a� rð Þ= a� bð Þ	 

(42)

In our studies and experiment, the material properties of this FGM panel are made up with zirconia and

aluminium. Moreover, the distribution of volume fractions along the radial direction obeyed the power laws can

be defined as

VC rð Þ ¼ a� rð Þ= a� bð Þ	 
c
;

VA rð Þ ¼ 1� a� rð Þ= a� bð Þ	 
c (43)

Here, A means aluminium and C represents ceramic zirconia. Therefore, the material properties of this FGM

cylindrical panel are derived as

fCij; qg ¼ fCij;C; qCgVC rð Þ þ fCij;A; qAgVA rð Þ (44)

The fundamental material properties in this paper are shown in Table 4.

Table 1. FGM cylindrical panels’ parameters.41

Constituent

Elastic modulus

E (GPa)

Poisson’s ratio

l
Mass density

q (kg/m3)

SUS304 (metal) 207.7877 0.31776 8166

Si3N4 (ceramic) 322.2715 0.24 2370

Table 2. Natural frequencies of the first mode for FGM cylindrical panels.

c Yang and Shen42
Pradyumna and

Bandyopadhyay41 Proposed method

0 74.518 72.9613 73.8433

0.2 57.479 60.0269 59.6093

2 40.750 39.1457 39.0261

Table 3. Cases with different variables and boundaries.

Case

number

Variation law of

material properties

central

angle a
FG index

c
Load

parameter j

Length

l (m)

Outer

Radius

a (m)

Width

b (m)

Boundary

conditions

at z¼ 0, l

1 Exponential 30	 5 3 1 1 0.98 C-C

2 Exponential 45	 0.2 1 2 1 0.98 C-F

3 Power 90	 0.5 3 0.7 1 0.98 C-S

4 Power 60	 5 1 1.2 1 0.98 S-S
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Then the distribution properties of each layer can be defined as

fCij; qgk ¼

Z zk

zk�1

fCij; qgðrÞdr
rk � rk�1

(45)

where k¼ 1,2,. . .,K.
The force applying to the outer surface (r¼a) of the cylindrical panel is given as31

at r ¼ a; rr ¼ 10�3C33;Asin
jp
a
h

� �
exp �tcA=lð Þ (46)

where cA ¼ C33;A=qA
� �1=2

is the longitudinal wave velocity of aluminium.44

At first, the layer number K and sampling point M are 4 and 21, respectively. The finite element models

established by software ANSYS are given in Figure 3. Solid 64 of the structure elements are used in the finite

element analysis. The central position (r¼(aþ b)/2, h¼ 0, z¼ l/2) is chosen to calculate the results. In Figure 4, the

numerical results between the proposed approach and FEM are compared with each other. It is shown that the

results predicted by the two methods agree with each other. Compared with ANSYS, the method has a higher

computational efficiency in calculating the transient response of the cylindrical panel, and relevant data can be

found in Table 5. Moreover, the numerical solutions are independent from conditions determined by geometry,

FG index and other boundary conditions.

Convergence studies

The importance of convergence studies lies in their purpose of clarifying the effects of different factors. And the

condition which is used to carry out the research is the same as the conditions put in place for case 4 in Table 3.

Figure 3. FE models of (a) case 1, (b) case 2, (c) case 3, and (d) case 4.

Table 4. Fundamental material properties.43

Constituent

Elastic modulus

E (GPa)

Poisson’s ratio

l
Mass density

q (kg/m3)

Aluminium (Al) 70 0.3 2700

Zirconia (ZrO2) 200 0.3 5700
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Firstly, a series of sampling points are used to analyse the convergence rate along the z- direction. The values of

M are 5, 11, 17, 21 and 31, respectively. The relation between the normalised deflection ur/a and time history at

central position are shown in Figure 5. It is indicated that, the more sampling point numbers, the more accurate

the results will be. When the numbers of sampling points are at a relatively large level, the results do not change

much. It also displays that the proposed method converges fast with the increasing sampling points.
Secondly, a series of layer numbers are employed in order to analyse the convergence rate along the r direction.

The values of K are 2, 4, 8 and 12, respectively. The relation between the normalised deflection ur/a and time

history at central position are shown in Figure 6. It is indicated that the cases with K are larger than 4 and have

nearly the same results. Therefore, the proposed approach has a high convergence rate with the change of

layer numbers.

Effects of l/a and (a�b)/a

To study the effects of l/a and (a-b)/a, the deflection along the radial direction of FGM cylindrical panels are

examined here. The sampling point number and the layer number are 21 and 4 respectively. Also, the condition

which is used to carry out the researches is the same as case 4 in Table 3.

Figure 4. Deflection history: (a) case 1; (b) case 2; (c) case 3; (d) case 4.

Table 5. Time required for calculating the dynamic response of the FGM cylindrical panel.

Methods NSP 1 2 3 Average time (s)

Proposed method 5 68.234 69.375 69.156 68.922

11 162.154 139.295 179.751 160.4

21 402.031 423.969 475.75 433.917

31 879.189 967.252 974.125 940.189

ANSYS / 1323.000 1293.688 1295.516 1304.068

NSP: number of sampling points.
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Firstly, the effect of the length/outer radius ratio (l/a) is investigated. A series of l/a¼ 1, 1.2, 1.6, and 2 are used
here. The relation between the normalised deflection ur/a and time history at the central position are shown in
Figure 7. It shows that the deflection of FGM cylindrical panels increases as length/outer radius ratio l/a
increases. The reason is that the flexibility of the whole structure becomes greater when the ratio increases.
Thus, the cylindrical panel deforms easier under the same external force, and the vibration period will also
be longer.

Secondly, the effect of the thickness/outer radius ratio (a-b)/a is studied. A series of (a-b)/a¼ 0.02, 0.04, 0.08
and 0.16 is employed here. Both the length and outer radius are fixed to be 1 m. The relation between the
normalised deflection ur/a and time history at central position are plotted in Figure 8. As indicated in the
figure, the deflection shows a trend that is actually opposite to what is observed with the thickness/outer

Figure 5. Deflection history with different numbers of sampling points.

Figure 6. Deflection history with different layer numbers.

Figure 7. Deflection history with different length/outer radius ratio.
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radius ratio. When the ratio increases, the deflection actually decreases. Because, on the one hand, the structural

flexibility will become less with the increase of thickness, and on the other hand, the bearing capacity of the

structure is strengthened with the increase of thickness. So that it can resist external force more effectively, and the

vibration period will also be shortened.

Effect of FG index

To study the effects of FG index c, the deflection along the radial direction of FGM cylindrical panel is examined

here. The sampling point number and the layer number are 21 and 4, respectively. Furthermore, the condition

which is used to carry out the research is the same as case 4 in Table 3.
In this section, the paper has studied two different variation laws. On the one hand, the power variation law

means that the fundamental properties distribute in a power law. On the other hand, the exponential variation law

assumes the fundamental properties distribute in an exponential law. And both of them employed various FG

parameters c¼ 0.2, 0.5, 2 and 5 in this FGM cylindrical panel.
Two different variation laws show distinct differences on the transient response of FGM cylindrical panels at

central position in Figure 9. In terms of exponential variation law, the deflection of the panel decreases as

functionally graded index c increases. But for the FGM panel with a power variation law, the deflection of the

panel increases as functionally graded index c increases. It is because the smaller value of FG index is, the more

uniform the volume fraction becomes, which leading to the higher structural strength and weaker vibration

response. However, the result of the exponential law is on the contrary.

CNT-reinforced FGM

The discovery of CNT has been a great breakthrough in many applications.45,46 Due to their superior

mechanical, electrical and chemical properties, CNT can be utilized to strengthen composite materials. In

this section, the uniform distribution of CNT is taken into consideration to improve the ability of resisting

the FGM cylindrical panel’s vibration. The condition which is used to carry out the research is the same as

case 3 in Table 3, but the time domain is different. The single-wall CNT (SWCNT) material properties are

assumed to be qCNT¼ 1400 kg/m3, lCNT¼ 0.175, ECNT¼ 5.6466 TPa. The volume fraction of CNT for the

FGM cylindrical panel is assumed to be VCNT. The SWCNT uniformly distributed along the thickness

direction of the composite cylindrical panel can be depicted in Figure 10. The relationship between VCNT

and VFGM should satisfy with

VCNT þ VFGM ¼ 1 (47)

The comparison of FGM and CNT-reinforced FGM at the central position is shown in Figure 11. Besides, four

boundary conditions in this circumstance are also depicted.

Figure 8. Deflection history with different thickness/outer radius ratio.
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Figure 10. Uniform distribution of CNT.

Figure 9. Deflection history with different variation law: (a) power law; (b) exponential law.

Figure 11. Deflection history with FGM and CNT reinforced FGM.

Liang et al. 15



Figure 11 indicates that SWCNT greatly enhances the mechanical characteristics of FGM and strengthens the

ability of composite structure to resist external force. As shown in Figure 12, clamp-clamp condition gives the

smallest deflection in these four boundary conditions.

Conclusions

To analyse the dynamic vibration of FGM cylindrical panels under different boundaries, a 3D semi-analytical

method is proposed by introducing the Durbin’s numerical inversion method, state space approach, and differ-

ential quadrature method. Compared with many numerical methods, the semi-analytical results in this paper have

higher accuracy, because there are fewer errors and limitations caused by the introduction of stress and displace-

ment assumptions.
To compare the proposed approach with other theoretical methods from the literature, the natural frequencies

show consistent results. Especially, the reliable comparative verification of transient response produced by the

proposed method and FEM on different boundary conditions is presented. Convergence studies indicate that the

proposed method has a quick convergence rate with growing sample point numbers along the length direction and

layer numbers along the radial direction. For the study of different length/outer radius ratio, the flexibility of the

whole structure becomes greater when the ratio increases. Thus, the cylindrical panel deforms easier under the

same external force, and the vibration period will also become longer. The effect of thickness/outer radius ratio is

also studied. The increase of thickness can resist external force more effectively, and the vibration period will also

be shortened. The results compared with the power law and exponential law show completely different. To

combine this characteristic with engineering, FGM can be designed to meet complex circumstances and optimize

the structural performance. When the uniform distribution of CNT is added to FGM cylindrical panel, the

mechanical properties of composite structure have been reinforced greatly. The proposed 3D semi-analytical

method has high accuracy for the analysis of composite structures and can be used to study the behaviour of

functionally graded porous material in the further research. This study can serve as a foundation for solving more

complicated problems such as fluid–structure interaction of flexible pipe or thermal effect analysis of FGM in

aerospace field.
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� a2 C
*2

13A
1ð Þ
m1A

1ð Þ
1n þ C

*

11g4A
2ð Þ
mn

� �
l2C

*

11

;

I2 ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

2
666664

3
777775
M�2�M�2

; and m; n ¼ 2
M� 2 . . .

(C-S)

H ¼

g1I2
R

H12 � jpg2I2
R2a

ag3A
1ð Þ
mn

lR
� aA 1ð Þ

mn

l

jpI2
Ra

I2

C
*

11

H22 H23 H24 0 0

0 � jpI2
Ra

I2
R

0 0
I2

C
*

66

0 � aA 1ð Þ
mn

l
0 0

I1

C
*

55

0

H51 H52 H53 H54 � I1
R

0

H61 � jpg2I2
R2a

H63 H64 0 � 2I2
R

2
66666666666666666666664

3
77777777777777777777775

(50)

where

H51 ¼ � aC
*

13A
1ð Þ
mn

lC
*

11

; m ¼ 1
M� 1; n ¼ 2
M� 1; H61 ¼ � jpC
*

12I2

RaC
*

11

; m; n ¼ 2
M� 1;

H12 ¼ q
*
s
*2 þ g2

R2

� �
I2 � a2C

*

55A
1ð Þ
mMA

1ð Þ
Mn

l2
; m; n ¼ 2
M� 1; H22 ¼ �C

*

12I2

RC
*

11

; m; n ¼ 2
M� 1;

H52 ¼ � ag3A
1ð Þ
mn

lR
; m ¼ 1
M� 1; n ¼ 2
M� 1; H23 ¼ jpC

*

12I2

RaC
*

11

; m; n ¼ 2
M� 1;

H53 ¼
jpa g3 þ C

*

44

� �
A 1ð Þ

mn

lRa
; m ¼ 1
M� 1; n ¼ 2
M� 1;

H63 ¼ q
*
s
*2 þ j2p2g2

R2a2

� �
I2 � a2C

*

44A
2ð Þ
mn

l2
; m; n ¼ 2
M� 1;

H24 ¼ � aC
*

13A
1ð Þ
mn

lC
*

11

; m ¼ 2
M� 1; n ¼ 1
M� 1;

H64 ¼ � jpa g3 þ C
*

44

� �
A 1ð Þ

mn

lRa
; m ¼ 2
M� 1; n ¼ 1
M� 1;

H54 ¼ q
*
s
*2 þ j2p2C

*

44

R2a2

 !
I1 þ

a2g4 A 1ð Þ
1n A

1ð Þ
m1 � A 2ð Þ

mn

� �
l2

� a2C
*2

13A
1ð Þ
mMA

1ð Þ
Mn

l2C
*

11

: m; n ¼ 1
M� 1;

I1 ¼
1 0 � � � 0
0 1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 1

2
6664

3
7775
M�1�M�1
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(C-F)

H ¼

g1I2
R

H12 H13 H14 � aA 1ð Þ
mn

l

jpE8

Ra

G5

C
*

11

H22 H23 H24 0 0

0 � jpI1
Ra

I1
R

0 0
I1

C
*

66

0 � aA 1ð Þ
mn

l
0 0

I2

C
*

55

0

H51 H52 H53 H54 � I2
R

0

H61 � jpg2I1
R2a

H63 H64 0 � 2I1
R

2
66666666666666666666666664

3
77777777777777777777777775

(51)

where

H51 ¼ � aC
*

13A
1ð Þ
mn

lC
*

11

; m; n ¼ 2
M� 1; H61 ¼ � jpC
*

12G5

RaC
*

11

; m ¼ 1
M� 1; n ¼ 2
M� 1;

H12 ¼ q
*
s
*2 þ g2

R2

� �
E8 � a2C

*

55A
1ð Þ
mMA

1ð Þ
Mn

l2
; m ¼ 2
M� 1; n ¼ 1
M� 1;

H22 ¼ �C
*

12I1

RC
*

11

; m; n ¼ 1
M� 1; H52 ¼ ag3A
1ð Þ
m1

lR
� ag3A

1ð Þ
mn

lR
; m ¼ 2
M� 1; n ¼ 1
M� 1;

H13 ¼ � jpg2E8

R2a
� aa2g3A

1ð Þ
1n A

1ð Þ
m1

l2jp
; m ¼ 2
M� 1; n ¼ 1
M� 1;

H23 ¼ jpC
*

12I1

RaC
*

11

þ Raa2C
*

13A
1ð Þ
1n A

1ð Þ
m1

l2jpC
*

11

; m; n ¼ 1
M� 1;

H53 ¼ � jpag3A
1ð Þ
m1

lRa
þ Raa3A 1ð Þ

1n C
*2

13A
1ð Þ
M1A

1ð Þ
mM � C

*

11g4A
1ð Þ
11 A

1ð Þ
m1 � C

*

11g4A
2ð Þ
m1

� �
l3jpC

*

11

þ jpa g3 þ C
*

44

� �
A 1ð Þ

mn

lRa
;

m ¼ 2
M� 1; n ¼ 1
M� 1;

H63 ¼ q
*
s
*2 þ j2p2g2

R2a2

� �
I1 þ

a2 g3 þ C
*

44

� �
A 1ð Þ

1n A
1ð Þ
m1

l2
� a2C

*

44A
2ð Þ
mn

l2
; m; n ¼ 1
M� 1;

H24 ¼ � ag4A
1ð Þ
1n

lC
*

13

� aC
*

13A
1ð Þ
mn

lC
*

11

; m ¼ 1
M� 1; n ¼ 2
M� 1;

H64 ¼ jpaC
*

12g4A
1ð Þ
1n

lRaC
*

13

� jpa g3 þ C
*

44

� �
A 1ð Þ

mn

lRa
; m ¼ 1
M� 1; n ¼ 2
M� 1;

H54 ¼ q
*
s
*2 þ j2p2C

*

44

R2a2

 !
I2 þ

a2g4 A 1ð Þ
1n A

1ð Þ
m1 � A 2ð Þ

mn

� �
l2

� a2C
*2

13A
1ð Þ
mMA

1ð Þ
Mn

l2C
*

11

; m; n ¼ 2
M� 1;

E8 ¼ GT
5 ¼ 0M�2�1; I2½ �M�2�M�1
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(S-S)

H ¼

� g1I2
R

H12 � jpg2I2
R2a

ag3A
1ð Þ
mn

lR
� aA 1ð Þ

mn

l

jpI2
Ra

I2

C
*

11

H22 H23 H24 0 0

0 � jpI2
Ra

I2
R

0 0
I2

C
*

66

0 � aA 1ð Þ
mn

l
0 0

IM

C
*

55

0

H51 H52 H53 H54 � IM
R

0

H61 � jpg2I2
R2a

H63 H64 0 � 2I2
R

2
666666666666666666666664

3
777777777777777777777775

(52)

where

H51 ¼ � aC
*

13A
1ð Þ
mM

lC
*

11

� aC
*

13A
1ð Þ
mn

lC
*

11

; m ¼ 1
M; n ¼ 2
M� 1; H61 ¼ � jpC
*

12I2

RaC
*

11

; m; n ¼ 2
M� 1;

H12 ¼ q
*
s
*2 þ g2

R2

� �
I2; m; n ¼ 2
M� 1; H22 ¼ �C

*

12I2

RC
*

11

; m; n ¼ 2
M� 1;

H52 ¼ � ag3A
1ð Þ
mn

lR
; m ¼ 1
M; n ¼ 2
M� 1; H23 ¼ jpC

*

12I2

RaC
*

11

; m; n ¼ 2
M� 1;

H53 ¼
jpa g3 þ C

*

44

� �
A 1ð Þ

mn

lRa
; m ¼ 1
M; n ¼ 2
M� 1;

H63 ¼ q
*
s
*2 þ j2p2g2

R2a2

� �
I2 � a2C

*

44A
2ð Þ
mn

l2
; m; n ¼ 2
M� 1;

H24 ¼ � aC
*

13A
1ð Þ
mn

lC
*

11

; m ¼ 2
M� 1; n ¼ 1
M;

H54 ¼ q
*
s
*2 þ j2p2C

*

44

R2a2

 !
IM þ a2g4A

1ð Þ
1n A

1ð Þ
m1

l2
� a2g4A

2ð Þ
mn

l2
; m; n ¼ 1
M;

H64 ¼ � jpa g3 þ C
*

44

� �
A 1ð Þ

mn

lRa
; m ¼ 2
M� 1; n ¼ 1
M
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