27,871 research outputs found

    Personalization of Saliency Estimation

    Full text link
    Most existing saliency models use low-level features or task descriptions when generating attention predictions. However, the link between observer characteristics and gaze patterns is rarely investigated. We present a novel saliency prediction technique which takes viewers' identities and personal traits into consideration when modeling human attention. Instead of only computing image salience for average observers, we consider the interpersonal variation in the viewing behaviors of observers with different personal traits and backgrounds. We present an enriched derivative of the GAN network, which is able to generate personalized saliency predictions when fed with image stimuli and specific information about the observer. Our model contains a generator which generates grayscale saliency heat maps based on the image and an observer label. The generator is paired with an adversarial discriminator which learns to distinguish generated salience from ground truth salience. The discriminator also has the observer label as an input, which contributes to the personalization ability of our approach. We evaluate the performance of our personalized salience model by comparison with a benchmark model along with other un-personalized predictions, and illustrate improvements in prediction accuracy for all tested observer groups

    WAYLA - Generating Images from Eye Movements

    Full text link
    We present a method for reconstructing images viewed by observers based only on their eye movements. By exploring the relationships between gaze patterns and image stimuli, the "What Are You Looking At?" (WAYLA) system learns to synthesize photo-realistic images that are similar to the original pictures being viewed. The WAYLA approach is based on the Conditional Generative Adversarial Network (Conditional GAN) image-to-image translation technique of Isola et al. We consider two specific applications - the first, of reconstructing newspaper images from gaze heat maps, and the second, of detailed reconstruction of images containing only text. The newspaper image reconstruction process is divided into two image-to-image translation operations, the first mapping gaze heat maps into image segmentations, and the second mapping the generated segmentation into a newspaper image. We validate the performance of our approach using various evaluation metrics, along with human visual inspection. All results confirm the ability of our network to perform image generation tasks using eye tracking data

    An application of adaptive fault-tolerant control to nano-spacecraft

    Get PDF
    Since nano-spacecraft are small, low cost and do not undergo the same rigor of testing as conventional spacecraft, they have a greater risk of failure. In this paper we address the problem of attitude control of a nano-spacecraft that experiences different types of faults. Based on the traditional quaternion feedback control method, an adaptive fault-tolerant control method is developed, which can ensure that the control system still operates when the actuator fault happens. This paper derives the fault-tolerant control logic under both actuator gain fault mode and actuator deviation fault mode. Taking the parameters of the UKube-1 in the simulation model, a comparison between a traditional spacecraft control method and the adaptive fault-tolerant control method in the presence of a fault is undertaken. It is shown that the proposed controller copes with faults and is able to complete an effective attitude control manoeuver in the presence of a fault

    Average quantum dynamics of closed systems over stochastic Hamiltonians

    Full text link
    We develop a master equation formalism to describe the evolution of the average density matrix of a closed quantum system driven by a stochastic Hamiltonian. The average over random processes generally results in decoherence effects in closed system dynamics, in addition to the usual unitary evolution. We then show that, for an important class of problems in which the Hamiltonian is proportional to a Gaussian random process, the 2nd-order master equation yields exact dynamics. The general formalism is applied to study the examples of a two-level system, two atoms in a stochastic magnetic field and the heating of a trapped ion.Comment: 17 pages, 1 figure, submitted to Physical Review
    • …
    corecore