211 research outputs found

    AIF Downregulation and Its Interaction with STK3 in Renal Cell Carcinoma

    Get PDF
    Apoptosis-inducing factor (AIF) plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC). In a group of RCC specimens, 84% (43 out of 51) had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation

    Expression and biological significance of c-FLIP in human hepatocellular carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>c-FLIP can be considered as a tumor-progression factor in regard to its anti-apoptotic functions. In the present study, we intended to investigate the expression of c-FLIP in human HCC tissues, and its relation with drug-induced cell apoptosis through the specific inhibition of c-FLIP expression by siRNA in 7721 cells.</p> <p>Methods</p> <p>c-FLIP expression was quantified immunohistochemically in HCC tissues(eighty-six cases), and corresponding noncancerous tissues (fifty-seven cases). Patients with HCC were followed up for cancer recurrence. Then, the c-FLIP gene was silenced with specific siRNA in 7721 HCC cells. c-FLIP expression was detected by RT-PCR, Western Blot and immunocytochemical staining. The cellular viability and cell apoptosis were assayed <it>in vitro </it>with cells treated with doxorubicin.</p> <p>Results</p> <p>Positive immunostaining was detected for c-FLIP in 83.72% (72/86) human HCC tissues, 14.81% (4/27) hepatic cirrhosis, 11.11% (2/18) hepatic hemangioma tissues, and absent in normal hepatic tissues. The overexpression(more than 50%) of c-FLIP in HCC adversely affected the recurrence-free survival. Through c-FLIP gene silencing with siRNA, the expressions of c-FLIP mRNA and protein were remarkably down-regulated in 7721 HCC cells. And doxorubicin showed apparent inhibition on cell proliferations, and induced more apoptosis.</p> <p>Conclusion</p> <p>These results indicate that c-FLIP is frequently expressed in human HCCs, and its overexpression implied a lesser probability of recurrence-free survival. The specific silencing of c-FLIP gene can apparently up-regulate drug-induced HCC cell apoptosis, and may have therapeutic potential for the treatment of human HCC.</p

    Study on cutting performance of SiCp/Al composite using textured YG8 carbide tool

    Get PDF
    Precision machining of SiCp/Al composites is a challenge due to the existence of reinforcement phase in this material. This work focuses on the study of the textured tools’ cutting performance on SiCp/Al composite, as well as the comparison with non-textured tools. The results show that the micro-pit textured tool can reduce the cutting force by 5–13% and cutting length by 9–39%. Compared with non-textured tools, the cutting stability of the micro-pit textured tools is better. It is found that the surface roughness is the smallest (0.4 μm) when the texture spacing is 100 μm, and the residual stress can be minimized to around 15 MPa in the case of texture spacing 80 μm. In addition, the SiC particles with size of around 2–12 μm in the SiCp/Al composite may play a supporting role between the texture and the chips, which results in three-body friction, thereby reducing tool wear, sticking, and secondary cutting phenomenon. At the same time, some SiC particles enter into the micro-pit texture, so that the number of residual particles on the surface is reduced and the friction between the tool and the surface then decreases, which improves the surface roughness, and reduces the surface residual stress.TU Berlin, Open-Access-Mittel - 202

    Association Between Post-procedure Cerebral Blood Flow Velocity and Severity of Brain Edema in Acute Ischemic Stroke With Early Endovascular Therapy

    Get PDF
    ObjectivesWe aimed to investigate the association between post-procedure cerebral blood flow velocity (CBFV) and severity of brain edema in patients with acute ischemic stroke (AIS) who received early endovascular therapy (EVT).MethodsWe retrospectively included patients with AIS who received EVT within 24 h of onset between February 2016 and November 2021. Post-procedure CBFV of the middle cerebral artery was measured in the affected and the contralateral hemispheres using transcranial Doppler ultrasound. The severity of brain edema was measured using the three-level cerebral edema grading from the Safe Implementation of Thrombolysis in Stroke-Monitoring Study, with grades 2–3 indicating severe brain edema. The Association between CBFV parameters and severity of brain edema was analyzed.ResultsA total of 101 patients (mean age 64.2 years, 65.3% male) were included, of whom 56.3% (57/101) suffered brain edema [grade 1, 23 (22.8%); grade 2, 10 (9.9%); and grade 3, 24 (23.8%)]. Compared to patients with non-severe brain edema, patients with severe brain edema had lower affected/contralateral ratios of systolic CBFV (median 1 vs. 1.2, P = 0.020) and mean CBFV (median 0.9 vs. 1.3, P = 0.029). Multivariate logistic regression showed that severe brain edema was independently associated with affected/contralateral ratios of systolic CBFV [odds ratio (OR) = 0.289, 95% confidence interval (CI): 0.069–0.861, P = 0.028] and mean CBFV (OR = 0.278, 95% CI: 0.084–0.914, P = 0.035) after adjusting for potential confounders.ConclusionPost-procedure affected/contralateral ratio of CBFV may be a promising predictor of brain edema severity in patients with AIS who received early EVT

    Research on the micro-hole texture forming of PCD tool surface

    Get PDF
    Based on the research on the forming mechanism of textured PCD tool surface, the nanosecond laser is used to study the influence of laser machining parameters on the size and topography of PCD tool surface micro texture. The micro-hole texture is prepared on the surface of the PCD tool, and a single factor experiment is designed to study the influence of laser power, pulse frequency and defocusing amount on the micro-hole texture. The results show that, the micro-hole diameter increases gradually with the laser power, but decreases with the pulse frequency; the overall micro-hole diameter tends to increase with the defocus. The pulse frequency has the greatest impact on the micro-hole diameter, followed by the defocus amount, and finally the laser power. The influence of different parameters on the surface recast layer is also completely different. As a result, the surface and laser power are the main factors that affect the surface recast layer

    Recent progress in bio-inspired macrostructure array materials with special wettability—from surface engineering to functional applications

    Get PDF
    Bio-inspired macrostructure array (MAA, size: submillimeter to millimeter scale) materials with special wettability (MAAMs-SW) have attracted significant research attention due to their outstanding performance in many applications, including oil repellency, liquid/droplet manipulation, anti-icing, heat transfer, water collection, and oil–water separation. In this review, we focus on recent developments in the theory, design, fabrication, and application of bio-inspired MAAMs-SW. We first review the history of the basic theory of special wettability and discuss representative structures and corresponding functions of some biological surfaces, thus setting the stage for the design and fabrication of bio-inspired MAAMs-SW. We then summarize the fabrication methods of special wetting MAAs in terms of three categories: additive manufacturing, subtractive manufacturing, and formative manufacturing, as well as their diverse functional applications, providing insights into the development of these MAAMs-SW. Finally, the challenges and directions of future research on bio-inspired MAAMs-SW are briefly addressed. Worldwide efforts, progress, and breakthroughs from surface engineering to functional applications elaborated herein will promote the practical application of bio-inspired MAAMs-SW
    • …
    corecore