955 research outputs found

    Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms

    Get PDF
    Three-dimensional (3D) simulation of patient-specific morphological models has been widely used to provide the hemodynamic information of individual patients, such as wall shear stress (WSS), oscillatory shear index (OSI), and flow patterns, etc. Since patient-specific morphological segment was only restricted locally, boundary conditions (BCs) are required to implement the CFD simulation. Direct measurements of the flow and pressure waveforms were often required as input BCs for 3D CFD simulations of patient-specific models. However, as the morphology develops, the feedback from this topological deformation may lead to BCs being altered, and hence without this feedback, the flow characteristics of the morphology are only computed locally. A one-dimensional (1D) numerical model containing the entire human vessel network has been proposed to compute the global hemodynamics. In the meantime, experimental studies of blood flow in the patient-specific modeling of the circle of Willies (CoW) was conducted. The flow and pressure waveforms were quantified to validate the accuracy of the pure 1D model. This 1D model will be coupled with a 3D morphological model to account for the effects of the altered BCs. The proposed 1D-3D multi-scale modeling approach investigates how the global hemodynamic changes can be induced by the local morphological effects, and in consequence, may further result in altering of BCs to interfere with the solution of the 3D simulation. Validation of the proposed multi-scale model has also been made by comparing the solution of the flow rate and pressure waveforms with the experimental data and 3D numerical simulations reported in the literature. Moreover, the multi-scale model is extended to study a patient-specific cerebral aneurysm and a stenosis model. The proposed multi-scale model can be used as an alternative to current approaches to study intracranial vascular diseases such as an aneurysm, stenosis, and combined cases

    Water in Protein Cavities: Free Energy, Entropy, Enthalpy, and its Influences on Protein Structure and Flexibility

    Get PDF
    Complexes of the antibiotics novobiocin and clorobiocin with DNA gyrase are illustrative of the importance of bound water to binding thermodynamics. Mutants resistantto novobiocin as well as those with a decreased affinity for novobiocin over clorobiocinboth involve a less favorable entropy of binding, which more than compensates for amore favorable enthalpy, and additional water molecules at the proteinligandinterface.Free energy, enthalpy, and entropy for these water molecules were calculated by thermodynamicintegration computer simulations. The calculations show that addition of thewater molecules is entropically unfavorable, with values that are comparable to the measuredentropy differences. The free energies and entropies correlate with the change inthe number of hydrogen bonds due to the addition of water molecules.To examine the wide variety of cavities available to water molecules inside proteins,a model of the protein cavities is developed with the local environment treated at atomicdetail and the nonlocal environment treated approximately. The cavities are then changedto vary in size and in the number of hydrogen bonds available to a water molecule insidethe cavity. The free energy, entropy, and enthalpy change for the transfer of a watermolecule to the cavity from the bulk liquid is calculated from thermodynamic integration.The results of the model are close to those of similar cavities calculated using the fullprotein and solvent environment. As the number of hydrogen bonds resulting from theaddition of the water molecule increases, the free energy decreases, as the enthalpic gainof making a hydrogen bond outweighs the entropic cost. Changing the volume of thecavity has a smaller effect on the thermodynamics. Once the hydrogen bond contributionis taken into account, the volume dependence on free energy, entropy, and enthalpy issmall and roughly the same for a hydrophobic cavity as a hydrophilic cavity.The influences of bound water on protein structure and influences are also evaluatedby performing molecular dynamics simulation for proteins with and without boundwater. Four proteins are simulated, the wildtypebovine pancreatic trypsin inhibitor(BPTI), the wildtypehen egg white lysozyme (HEWL), and two variants of the wildtypeStaphylococcal nuclease (SNase), PHS and PHS/V66E. The simulation reveals that allthese four proteins suffer structural changes upon the removing of bound water molecules,as indicating by their increased RMSD values with respect to the crystal structures. Threeout of the four proteins, BPTI, HEWL, and the PHS mutant of SNase have increased flexibility,while no apparent flexibility change is seen in the PHS/V66E variant of SNase

    Water in Protein Cavities: Free Energy, Entropy, Enthalpy, and its Influences on Protein Structure and Flexibility

    Get PDF
    Complexes of the antibiotics novobiocin and clorobiocin with DNA gyrase are illustrative of the importance of bound water to binding thermodynamics. Mutants resistantto novobiocin as well as those with a decreased affinity for novobiocin over clorobiocinboth involve a less favorable entropy of binding, which more than compensates for amore favorable enthalpy, and additional water molecules at the proteinligandinterface.Free energy, enthalpy, and entropy for these water molecules were calculated by thermodynamicintegration computer simulations. The calculations show that addition of thewater molecules is entropically unfavorable, with values that are comparable to the measuredentropy differences. The free energies and entropies correlate with the change inthe number of hydrogen bonds due to the addition of water molecules.To examine the wide variety of cavities available to water molecules inside proteins,a model of the protein cavities is developed with the local environment treated at atomicdetail and the nonlocal environment treated approximately. The cavities are then changedto vary in size and in the number of hydrogen bonds available to a water molecule insidethe cavity. The free energy, entropy, and enthalpy change for the transfer of a watermolecule to the cavity from the bulk liquid is calculated from thermodynamic integration.The results of the model are close to those of similar cavities calculated using the fullprotein and solvent environment. As the number of hydrogen bonds resulting from theaddition of the water molecule increases, the free energy decreases, as the enthalpic gainof making a hydrogen bond outweighs the entropic cost. Changing the volume of thecavity has a smaller effect on the thermodynamics. Once the hydrogen bond contributionis taken into account, the volume dependence on free energy, entropy, and enthalpy issmall and roughly the same for a hydrophobic cavity as a hydrophilic cavity.The influences of bound water on protein structure and influences are also evaluatedby performing molecular dynamics simulation for proteins with and without boundwater. Four proteins are simulated, the wildtypebovine pancreatic trypsin inhibitor(BPTI), the wildtypehen egg white lysozyme (HEWL), and two variants of the wildtypeStaphylococcal nuclease (SNase), PHS and PHS/V66E. The simulation reveals that allthese four proteins suffer structural changes upon the removing of bound water molecules,as indicating by their increased RMSD values with respect to the crystal structures. Threeout of the four proteins, BPTI, HEWL, and the PHS mutant of SNase have increased flexibility,while no apparent flexibility change is seen in the PHS/V66E variant of SNase

    Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model

    Get PDF
    The inheritance of a normal assortment of chromosomes during each cell division relies on a cell-cycle surveillance system called the mitotic spindle checkpoint. The existence of sister chromatids that do not achieve proper bipolar attachment to the mitotic spindle in a cell activates this checkpoint, which inhibits the ubiquitin ligase activity of the anaphase-promoting complex or cyclosome (APC/C) and delays the onset of anaphase. The mitotic arrest deficiency 2 (Mad2) spindle checkpoint protein inhibits APC/C through binding to its mitotic-specific activator, Cdc20. Binding of Mad2 to Cdc20 involves a large conformational change of Mad2 and requires the Mad1–Mad2 interaction in vivo. Two related but distinct models of Mad1-assisted activation of Mad2, the “two-state Mad2” and the “Mad2 template” models, have been proposed. I review the recent structural, biochemical, and cell biological data on Mad2, discuss the differences between the two models, and propose experiments that test their key principles

    A Mini Review on Controlling the Size of Ag Nanoclusters by Changing the Stabilizer to Ag Ratio and by Changing DNA Sequence

    Get PDF
    Ag nanoclusters have received considerable attention in the past decade due to their distinguished photo-physical properties, which lead to very wide potential applications for biosensing and imaging. To this point, synthesis of well-defined Ag nanoclusters for practical applications is a key issue, in particular, controlling the size (or specific number of silver atoms) of Ag nanoclusters. Herein, we briefly discuss the effect of ratio of reactants, in terms of specific functional groups, on the size of Ag nanoclusters. Also, taking DNA as an example of biopolymer, we review how the DNA sequence can affect the specific number of Ag atoms in Ag nanoclusters. These conducted principles should provide significant guidance for preparation of Ag nanoclusters of precise size

    The Smc complexes in DNA damage response

    Get PDF
    The structural maintenance of chromosomes (Smc) proteins regulate nearly all aspects of chromosome biology and are critical for genomic stability. In eukaryotes, six Smc proteins form three heterodimers--Smc1/3, Smc2/4, and Smc5/6--which together with non-Smc proteins form cohesin, condensin, and the Smc5/6 complex, respectively. Cohesin is required for proper chromosome segregation. It establishes and maintains sister-chromatid cohesion until all sister chromatids achieve bipolar attachment to the mitotic spindle. Condensin mediates chromosome condensation during mitosis. The Smc5/6 complex has multiple roles in DNA repair. In addition to their major functions in chromosome cohesion and condensation, cohesin and condensin also participate in the cellular DNA damage response. Here we review recent progress on the functions of all three Smc complexes in DNA repair and their cell cycle regulation by posttranslational modifications, such as acetylation, phosphorylation, and sumoylation. An in-depth understanding of the mechanisms by which these complexes promote DNA repair and genomic stability may help us to uncover the molecular basis of genomic instability in human cancers and devise ways that exploit this instability to treat cancers

    Running on a treadmill: dynamic inhibition of APC/C by the spindle checkpoint

    Get PDF
    During mitosis, the genome duplicated during S-phase is synchronously and accurately segregated to the two daughter cells. The spindle checkpoint prevents premature sister-chromatid separation and mitotic exit. The anaphase-promoting complex/cyclosome (APC/C) is a key target of the spindle checkpoint. Upon checkpoint activation, the mitotic checkpoint complex (MCC) containing Mad2, Bub3, Mad3/BubR1 and Cdc20 inhibits APC/C. Two independent studies in budding yeast have now shed light on the mechanism by which MCC inhibits APC/C. These studies indicate that Mad3 binds to the mitotic activator of APC/C Cdc20 using peptide motifs commonly found in APC/C substrates and thus competes with APC/C substrates for APC/CCdc20 binding. In addition, Mad3 binding to APC/CCdc20 induces Cdc20 ubiquitination by APC/C, leading to the dissociation of MCC. Meanwhile, two other studies have shown that a deubiquitinating enzyme is required for the spindle checkpoint whereas APC/C-dependent ubiquitination is needed for checkpoint inactivation. Collectively, these studies suggest a dynamic model for APC/CCdc20 regulation by MCC in which APC/C- and Mad3-dependent ubiquitination of Cdc20 constitutes a self-regulated switch that rapidly inactivates the spindle checkpoint upon correct chromosome attachment
    corecore