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Abstract

Complexes of the antibiotics novobiocin and clorobiocin with DNA gyrase are illus-
trative of the importance of bound water to binding thermodynamics. Mutants resistant
to novobiocin as well as those with a decreased affinity for novobiocin over clorobiocin
both involve a less favorable entropy of binding, which more than compensates for a
more favorable enthalpy, and additional water molecules at the protein-ligand interface.
Free energy, enthalpy, and entropy for these water molecules were calculated by thermo-
dynamic integration computer simulations. The calculations show that addition of the
water molecules is entropically unfavorable, with values that are comparable to the mea-
sured entropy differences. The free energies and entropies correlate with the change in
the number of hydrogen bonds due to the addition of water molecules.

To examine the wide variety of cavities available to water molecules inside proteins,
a model of the protein cavities is developed with the local environment treated at atomic
detail and the nonlocal environment treated approximately. The cavities are then changed
to vary in size and in the number of hydrogen bonds available to a water molecule inside
the cavity. The free energy, entropy, and enthalpy change for the transfer of a water
molecule to the cavity from the bulk liquid is calculated from thermodynamic integration.
The results of the model are close to those of similar cavities calculated using the full
protein and solvent environment. As the number of hydrogen bonds resulting from the
addition of the water molecule increases, the free energy decreases, as the enthalpic gain
of making a hydrogen bond outweighs the entropic cost. Changing the volume of the
cavity has a smaller effect on the thermodynamics. Once the hydrogen bond contribution
is taken into account, the volume dependence on free energy, entropy, and enthalpy is
small and roughly the same for a hydrophobic cavity as a hydrophilic cavity.

The influences of bound water on protein structure and influences are also evalu-
ated by performing molecular dynamics simulation for proteins with and without bound
water. Four proteins are simulated, the wild-type bovine pancreatic trypsin inhibitor
(BPTI), the wild-type hen egg white lysozyme (HEWL), and two variants of the wild-type
Staphylococcal nuclease (SNase), PHS and PHS/V66E. The simulation reveals that all
these four proteins suffer structural changes upon the removing of bound water molecules,
as indicating by their increased RMSD values with respect to the crystal structures. Three
out of the four proteins, BPTI, HEWL, and the PHS mutant of SNase have increased flexi-
bility, while no apparent flexibility change is seen in the PHS/V66E variant of SNase.

Keywords: Molecular Dynamics, Water, Protein-Ligand Binding, Free Energy Calculation,
Entropy, Enthalpy, Protein Structure, Protein Flexibility
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Chapter 1

Introduction

1.1 Protein Folding and Cavities in Protein Interiors

Proteins are a class of biological macromolecules of major importance, whose func-

tions involve catalyses of biological reactions, regulations of protein functions and gene

expressions, transports of substances, storage of nutrients. All proteins are composed of

one or more linear polypeptide chains built up from 20 amino acids. The amino acids in

polypeptide chains are linked through covalent peptide bonds and their linear sequences

are usually referred to as proteins’ primary structures. Each protein has an unique

amino acid sequence that is specified by the sequence of a gene [1, 2]. Segments of

polypeptides often fold locally into ordered spatial arrangements such as α helices and

� pleated sheets. The α helices are coiled structures stabilized by intra-chain hydrogen

bonds, while � sheets are side-by-side arrays of polypeptide strands that are stabilized

by hydrogen bonding between adjacent strands. These stable regular local structures are

often called the secondary structures of proteins. Single polypeptide chains may bend and

fold into irregular but nevertheless well-defined structures, these structures are usually

stabilized by disulfide bonds, ionic bonds as well as weak interactions (such as hydrogen

bonding and van der Waals interactions) and are defined as the tertiary structures of pro-

teins. Most proteins consist of more than one polypeptide chains of characteristic tertiary

structures, which are commonly referred to as subunits of proteins. The ways in which

· 1 ·



these interacting subunits associate to form oligomeric proteins constitute the quaternary

structures of proteins. Subunits that make up a oligomeric protein may be identical or

different. The secondary, as well as tertiary and quaternary structures of proteins are inti-

mately dependent upon their primary structures. Among them, the secondary structures

are specified by the short-range sequences of proteins, while the tertiary structures are

governed by their long-range sequences. The overall three dimensional architectures of

proteins are generally termed as their conformations, by which the functions of proteins

are completely determined.

Generally, proteins can be divided roughly into three global classes in terms of

their overall morphologies and physicochemical properties: fibrous, globular, and mem-

brane. Fibrous proteins are usually water insoluble proteins with relatively simple rod-like

or wire-like structures, they play mainly structural roles in living systems for mechani-

cal supports and protections. In contrast, globular proteins are mostly soluble proteins

in aqueous solutions with roughly spherical conformations, and they perform primarily

‘‘chemical’’ roles such as binding, catalyses and switching. Membrane proteins are protein

molecules that are noncovalently associated with various membrane systems of cells and

organelles, they contain higher proportions of hydrophobic amino acids compared with

globular proteins, and usually fold in such conformations that the apolar amino acids

are oriented into their membrane-associated regions while the polar amino acids expose

at the aqueous environments. Globular proteins are by far the most prevalent proteins

among these three categories due to their numerous amounts and functions [3].

The globular proteins are usually characterized by their hydrophobic cores buried

inside and hydrophilic surfaces exposed to and interacting with the water environments,

the globular shapes adopted by them lower their surface-to-volume ratios and hence

minimize their interactions with the surrounding medium. The well defined structure of

a globular protein is usually referred to as its native state, which is formed by a so called

folding process, and it is the most stable conformation for that protein in a given solvent
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at a particular temperature. The folding process of a protein happens in a so highly

cooperative manner that only the fully folded (native) state and the completely unfolded

(denatured) state are present stably, while the intermediate partly folded structure that

might interfere with processes within cells exists only transiently. It was believed that

protein folding is a cumulative selection process that is largely driven by the hydrophobic

effect. The folding pathway of a globular protein in aqueous solution starts with the

formation and retention of the correct local conformations such as α helices and � sheets,

the retained structures then undergo a hydrophobic collapse by aggregating the apolar

groups inside the protein and meanwhile expelling the majority of water molecules from

the interior, form a more compact global structure. Actually, the folded proteins are so

well packed that their packing density is similar to that found in molecular crystals of

amino acids [4, 5, 6, 7, 8, 9].

The tight packing of atoms in natively folded proteins, especially in their core re-

gions, are critical for structural specificity and stability [4, 7, 10]. Considering the sponta-

neous aggregation of oil in water, this process is largely driven by the hydrophobic effect.

However, the lack of specific architecture in the droplet interior implies that the hydropho-

bic interaction can not be regarded as the only factor governing protein folding; specific

packing interaction within protein interiors is believed to play a major role in protein con-

formation and stability [4]. Numerous studies have shown that the protein interiors are

closely packed, with an average packing density of about 0.75 [4, 7, 11, 12]. In a folded

protein, the complementary side chains of amino acids fit tightly with each other, giving

an unique folding structure with striking packing efficiency.

Although the protein interiors are tightly packed, the packing is not uniform; pack-

ing defects exist ubiquitously in proteins in the form of interior cavities. Indeed, internal

cavities of atomic size have been found by X-ray crystallography [13, 14, 15, 16, 17, 18]

and by theoretical methods [19, 20, 21]. Hubbard et al. performed a comprehensive anal-

ysis on internal cavities in 121 globular protein crystal structures and pointed out that,
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internal cavities are not artificial packing defects created in structure determination, they

present commonly in proteins of all size, particularly in proteins containing more than

100 residues, and are most happened in core regions. The sizes of cavities in protein

interiors spread over a large range, sometimes can be as large as 200 Å3. The total volume

of cavities accounts for approximately two percent of the total protein volume [20, 22].

Extensive site-directed mutagenesis experiments have identified that the internal

cavities may have influences on both the biological functions [23, 24] and the structural

stabilities [25, 26, 27, 28] of proteins. For example, Lambright et al. have suggested that

the rebinding kinetics of CO in myoglobin may be affected by the internal cavities [23], and

Lee et al. proposed that the inhibitory activity of α1-antitrypsin correlates positively with

the cavity volume [24]. The appearance of cavities in protein interiors may destabilize their

folded structures due to the loss of van der Waals contacts [28, 29, 30], notwithstanding

in some cases the cavities do increase proteins’ structural stabilities by eliminating un-

favorable strains [25]. Eriksson et al. created a number of ‘‘cavity-creating’’ mutations in

T4 lysozyme by substituting large hydrophobic residues with small ones (Leu→ Ala) and

noted that the loss of protein stability is approximately linearly related to the volume of

the cavity [28]. A similar linear relationship between the protein stability changes and the

cavity size was also obtained by Buckle et al. when studying the barnase Ile/Leu → Ala

mutants [31].

1.2 Cavities at Protein Binding Interfaces

Many of the most important biological processes in living organisms involve the

association of proteins to other proteins, DNAs/RNAs, or small ligands. For examples, in

living cells, the replication of DNAs are carried out by large protein complexes that consist

of a large number of protein components. Furthermore, the regulation of gene expression

and translation requires the binding of proteins to either double-strand or single-strand

DNAs/RNAs. It has long been recognized that protein binding, which represents inter-
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molecular recognition, shares many similar features with folding, which represents in-

tramolecular recognition [32, 33, 34, 35, 36]. For example, both the protein binding and

folding processes involve the repelling of water molecules and the assembling of comple-

mentary residue groups. Although the surfaces of binding subunits have a high degree of

geometry match [37] and hydrophobic complementarity [38, 39], they are far from perfect

packing. Lawrence and Colman analyzed the shape complementarity at surfaces between

oligomeric proteins and found that the protein interfaces are not optimally matched [40].

This conclusion was further confirmed by Hubbard and Argos on an analysis of a larger set

of data [41]. Interfacial cavities may be present due to the imperfection in surface comple-

mentarity between binding subunits. Several statistical analyses have demonstrated that

cavities occur frequently at the protein-protein interfaces [41, 42], and protein-DNA/RNA

interfaces [43].

The cavities present at protein-protein interfaces share some common properties

with those in protein interiors, such as wide distributions in cavity volume and hydropho-

bicity and rough relationship between total cavity volume and protein size. However,

the interfacial cavities have their unique characteristics. They happen more frequently

than interior cavities, their volumes spread a broader range and on average are larger

than internal cavity volumes [41, 42]. The cavities at the protein-DNA/RNA interfaces

were characterized by Sonavane and Chakrabarti and no significant differences are found

between them and protein-protein interfacial cavities [43]. The presence of interfacial

cavities in protein complexes may play some functional roles, though they sometimes

have harmful influences on stability and binding affinity. Hubbard and Argos, for exam-

ple, have suggested that the cavities at protein domain interfaces may involve shear or

hinge domain-domain motions [44], which are critical for some proteins to perform their

functions.
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1.3 Water in Protein Cavities and Its Biological Functions

Nature abhors a vacuum. As long as the empty sites not occupied by protein

atoms are large enough to accommodate water molecule(s), the solvent waters will try to

fill them. Crystal structure analysis has shown that cavities that large enough to hold at

least one water molecules are commonly found in protein interiors and contributed 1% to

the total protein volume [45]. Buried water molecules have been observed in a number

of experiments [31, 46, 47, 48, 49, 50, 51, 52, 53] and occupy 18% of these cavity sites,

giving on average 1 buried water for every 27 amino acid residues. The hydrated water

molecules prefer to reside in larger and polar cavities, almost all cavities with polarity

(the ratio of polar to apolar solvent accessible surface) above 0.55 and more than 92%

cavities that exceed 50 Å3 in solvent accessible volume are hydrated. Each hydrated

water molecule, on average, makes 3 polar contacts with the protein and other buried

waters [22, 45]. The hydration waters at the protein binding interfaces are analyzed by Lu

et al. in 2007. Their study involves 392 protein-ligand crystal structures with resolutions

≤ 2 Å. Over 85% of these protein-ligand structures are found have at least 1 bound water

molecules and totally 1839 bound waters are found in these 392 complexes, 72% of which

are interfacial waters that take part in the mediation of protein-ligand interaction. Each

interfacial water molecule averagely has 3 polar contacts

One of the reasons for experimental observations of water molecules reside fre-

quently in hydrophilic cavities is because the detection of water molecules is highly envi-

ronment dependent. Detection by conventional X-ray crystallography or nuclear magnetic

resonance (NMR) spectroscopy methods requires the hydration water molecules either

have low temperature factors or long residence times (see Section 1.4). In polar cavi-

ties, the hydrogen bonds formed with the cavity residues immobilize the translational

and rotational degree of freedom of the hydration water molecules, giving well defined

water structures. These buried water molecules can be easily determined in the X-ray
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and NMR experiments. The locating of hydration water molecules in hydrophobic cav-

ities is hampered by their disorder. Interleukin-1� (IL1B), for example, is a cytokine

protein that involved in wide-ranging cellular activities such as inflammatory response

and hematopoiesis. Structure analysis reveals five cavities in this protein interior, among

which four are hydrophilic cavities located around the trefoil structure (labels 1, 2, 3, 4

in Figure 1.1). Hydration water molecules in these polar cavities have been well identified

by both crystallography [55, 56, 57, 58, 59] and NMR [60, 61] methods. These water

molecules make multiple hydrogen bonds with the protein and involve in bridging the

backbone interactions. The remaining one cavity is a large hydrophobic cavity located in

the center of the protein (label 5 in Figure 1.1). This cavity can hold one to four water

molecules and is completely lined with nonpolar residues. The hydration state of this

cavity has caused much controversy. Several X-ray studies reveals no water molecules

in this cavity [55, 56, 57, 58, 59]. In contrary, a NMR examination conducted by Ernst

et al. demonstrates that there are positionally disordered water molecules. These water

molecules have residence times ranging from 1 ns to 200 µs, although they are too dis-

ordered to be determined by standard crystallography technique, they are detectable in

some NMR experiments [48]. A theoretically based crystallography analysis by Yu et al.

also suggests a hydrated water dimer within this cavity [52]. It should be noted, how-

ever, that the Yu et al. method is based on an iterative modification procedure of the

solvent density, the validity of this modification is not well justified. The hydration of

the central hydrophobic cavity is also supported by a 2007 molecular dynamics study, in

which water molecules with residence times exceeding 500 ps are observed. The number

of hydration water molecules vary dynamically between one to four [62]. Although there

appear some evidences about the hydration of this large hydrophobic cavity, a recent free

energy calculation shows unfavorable (positive) free energy changes for transferring water

molecules from the bulk into the cavity, the free energy cost increases monotonically with

the number of water molecules in the cavity [63]. The significant disagreements between
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these experiments and the simulation as well as the free energy calculation suggest that

the hydration pattern of hydrophobic cavities is still unclear and further work is needed.

Figure 1.1: 2NVH crystal structure of Interleukin-1� [59]. Five interior cavities are found
in this protein, of which four polar cavities are hydrated by water molecules (red spheres)
and one apolar cavity located in the center of the protein is observed to be empty (wireframe
at label 5)

The occupation of water molecules in protein cavity can promote the conforma-

tional stability by making favorable interactions with the protein. First, the buried water

molecules can increase the van der Waals contacts without introducing any new internal

· 8 ·



strains [22, 31, 64]. Second, the unique structure allows water can act as both hydrogen

bond donor and accepter. Although the protein core consists of predominantly hydropho-

bic residues, polar atoms are unavoidable due to the structural property of peptide bond;

solvated water(s) can stabilize protein by linking otherwise separated polar groups in

backbones and side chains via hydrogen bonding or hydrogen bonding networks [65, 66].

The influences of buried water on protein stability can be studied experimentally by in-

troducing them into or repelling them out from the protein interior through structural

mutations.

A well studied example about water in protein cavity is bovine pancreatic trypsin

inhibitor (BPTI). BPTI is a small serine protease inhibitor consisting of 58 amino acids in a

single polypeptide chain. It exists in blood and many tissues. The function of BPTI involves

the inhibition of several proteolytic enzymes such as trypsin, chymotrypsin, kallikrein

and plasmin, etc. Four water molecules are found to be buried completely in the protein

interior, and conserve in several wild type BPTI structures [67, 68, 69, 70, 71], even in an

extensively mutated form, which contains 20 alanines [72]. These four conserved water

molecules, which are usually considered as an integral part of the protein, located in two

cavities and are completely inaccessible to the bulk solvent. One isolated water (WAT122 in

5PTI structure, see Figure 1.2) is harbored in a small cavity which is composed of two loops

containing residues 11–14 and 36–38; the remaining three waters (WAT111, WAT112, and

WAT113 in 5PTI) form a cluster and reside in a channel-like cavity created by residues 8–

10 and 40–44 (). The most deeply buried water molecule in the cluster, WAT113, is about

7 Å away from the isolated WAT122 water. The four structural water molecules form

totally 9 water-protein and 2 water-water hydrogen bonds, with 4 water-protein hydrogen

bonds are contributed by WAT122 (Figure 1.2) [67, 68, 69]. A mutagenesis experiment

has shown that, the mutation of a glycine residue, Gly-36, to a serine residue to replace

the WAT122 water molecule with a hydroxyl group will break the hydrogen bond between

the water hydrogen and the carbonyl oxygen in cysteine 38, since the hydroxyl moiety
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can donate only one proton to potential hydrogen bond accepters. This interrupting of

hydrogen bond slightly destabilizes the BPTI mutant by approximately 0.7 kcal/mol [65].

Figure 1.2: 5PTI crystal structure of BPTI [68]. 4 buried water molecules are observed
in 5PTI structure (red spheres). 1 water molecule locates in an isolated cavity and the
remaining 3 water molecules reside in a larger cavity forming a water cluster.

Beside their stabilizing function, buried water molecules may also have some in-

fluence on the protein flexibility. The structural flexibility has been proved to have strong

influences on many proteins’ functions. Several studies have shown that the protein

function can be altered by mutations which do not affect the structure but do change

the flexibility [73, 74, 75]. One dramatic example is demonstrated in the work of Adams

et al.. Single point mutations in the protein Cdc42Hs, a member of the Ras superfamily of

proteins, can be oncogenic, not due to structural differences but solely through changes

in flexibility [74]. In another recent study, mutations in the C-terminal Src kinase, Csk,

disrupt the function of that enzyme by decreasing its flexibility [75]. The hydration of

protein interior changes the interactions among residues and thus affects its flexibility.
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Intuitively, the water occupancy of empty sites in protein will result in a tighter atomic

packing and hence a more rigid structure. Mao et al. has shown that the burial of a

water molecule apparently decreases the protein’s flexibility [76]. In contrast, the work

of Fischer, Verma and co-workers, also on the same protein (BPTI) and the same water

molecule (WAT122 in 5PTI, see Figure 1.2), found that the protein flexibility is increased

upon the addition of that water [77, 78, 79]. The promotion of protein flexibility by buried

waters are also observed by Olano and Rick in the study of BPTI and I76A mutant of

barnase. They found that both protein’s flexibilities are increased by introducing a water

molecule into the protein interiors [80]. How the water molecules influence the flexibility

of the protein is still not fully established.

In addition to their structural role, conserved water molecules have been found

in proteins belonging to the same homologous family [81, 82], implying that they may

serve more of functional roles [83, 84, 85]. For example, a X-ray study indicated that the

releasing of internal bound water molecules from the active sites of serine proteases plays

a primary role in the substrate binding [86]. A more recent study conducted by Tashiro

and Stuchebrukhov suggested that the presence of the structural water molecules in the

internal catalytic center of Cytochrome c Oxidase plays a dual role in the oxygen reduction

process: (1) proton transfer and, (2) protein conduction [85].

Water molecules appear in the cavities of protein interfaces are considered to me-

diate the protein-protein and protein-ligand interactions. These water molecules usually

have significant influences on protein binding thermodynamics. Large changes in binding

affinities between the proteins and ligands can be attributed to the presence of one or

more tightly bound water molecules at the binding sites [87, 88, 89, 90, 91, 92, 93, 94,

95, 96, 97]. These water molecules have attracted considerable attention due to their

potential applications in protein structure prediction and pharmaceutical design. For ex-

ample, in structure prediction, an improved prediction has been archieved by ‘‘wetting’’

the Hamiltonian with a knowledge-based potential to include the water mediated long-
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range interactions between polar or charged groups [98, 99]. The introduction of ordered

water molecules at the binding interfaces is generally considered to decrease the binding

affinities due to the significant entropic costs. This decrease sometimes can exceed over

an order of magnitude [92, 100]. This rule has been used as a strategy to design protein

inhibitors with greater binding affinities by replacing water molecules from the binding

interfaces [87]. However, there are exceptions that in some cases the binding affinities are

improved by introducing water molecules into the binding sites [101]. Although the water

molecules seem play import roles in protein binding, their thermodynamic properties are

still poorly understood.

1.4 Methods to Study Water in Protein Cavities

Experimentally, various techniques could be used to investigate the presence of

buried water molecules in protein interiors, e.g., X-ray crystallography [31, 49, 52], neu-

tron diffraction [47, 53], NMR spectroscopy [46, 48, 50], and mass spectrometry [51].

X-ray and neutron diffraction determine the water molecules by detecting the electron

densities of water atoms in protein crystals. Since the electron densities observed in the

experiment represent a linear superposition of all possible positions during the data col-

lection process, which typically lasts several hours, only well ordered water molecules with

thermal fluctuations smaller than 1 Å2 (the upper limit for resolving electron densities )

could be determined [102]. If the positional fluctuations larger than this limitation, the

resulting electron density will be smeared and, as a result, the water molecules are unde-

tectable. Such disordered water molecules can be detected in solution NMR spectroscopy.

NMR does not require the uniform ordering of water molecules but relies primarily on

the intermolecular nuclear Overhauser effect (NOE) between water protons and hydrogen

atoms of the proteins [46]. Since the NOE intensity depends on the inverse sixth power of

the proton-proton distance, a spatial proximity of protons between water molecules and

· 12 ·



the proteins are required. In addition, a residence time of 500 ps or longer is necessary

for the water molecules in order to generate a detectable signal [46, 60, 103].

The thermodynamics of buried water molecules in protein interior cavities can be

measured indirectly by investigating their influences on protein thermal stability and

protein-ligand interaction. In a typical experiment, the protein (or ligand) is altered

to introduce or eliminate buried water molecules, The thermodynamics of correspond-

ing buried water molecules are then interpreted from the difference in thermodynam-

ics of the mutated and native structures. Several methods could be used to study

the protein, protein-ligand binding thermodynamics, such as Circular Dichroism(CD)

[28, 65], Differential Scanning Calorimetry (DSC) [88], Isothermal Titration Calorimetry

(ITC) [64, 92, 95, 96], etc.. CD spectroscopy monitors the absorption of circularly po-

larized light. Protein secondary structures, such as α helices and � sheets are chiral

structures, and thus have different absorption properties for the left- and right-handed

circularly polarized light. The protein unfolding thermodynamics can be measured by

monitoring the change in the absorption for the two types of circularly polarized as a

function of denaturant concentration or temperature. DSC is an alternative technique

widely used to study the thermal denaturation of protein. DSC is designed to detect the

amount of heat required to raise the temperature of a protein system. By comparing with

the reference system, the heat capacity changes associated with protein thermal denat-

uration as a function of temperature are obtained, and thus, free energy, entropy, and

enthalpy. ITC is particularly suitable for studying the protein-ligand binding interaction.

In a basic ITC experiment, the ligand is injected gradually into the solution of protein,

the heat absorbed or released by the protein-ligand binding reaction is measured at a

constant temperature. Both equilibrium association constant, Ka, and enthalpy change,

∆H, can be obtained from a single ITC measurement.

Although spectroscopy and calorimetry techniques provide practical approaches to

examine the influences of buried water molecules on protein and protein-ligand thermody-
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namics, these methods are invariably rely upon the mutation of specific chemical groups.

The consequential changes of the structural conformations and interaction patterns of

the protein complexes induced by the mutated groups hamper the decomposition of the

water contribution from other factors. Computer simulation proved to be an efficient tool

to study the hydration of protein cavities without introducing too much perturbation to

the systems. With computational experiments, the hydration processes could be analyzed

at an exceedingly spatial and temporal detail; Both accurate thermodynamic and kinetic

properties, such as hydration free energies, entropies, and residence times of hydration

water molecules, can be extracted from the simulations. In addition, the simulations are

not limited by the physical availability of the protein systems, artificial systems could be

made and the hydration can be investigated in a systematic way. Moreover, hydration

properties under conditions that are difficult or impossible in the laboratory (for example,

extreme temperature or pressure) can also be explored by computer simulations.

1.5 Molecular Dynamics and Free Energy Calculation

One of the principal methods in the computational study of the water in protein

cavities is the Molecular Dynamics (MD) simulation. Since first introduced by Alder and

Wainwright in the late 1950’s [104, 105]. Molecular Dynamics has become a standard

computer simulation method [106, 107, 108, 109]. In classical Molecular Dynamics sim-

ulations of biomolecular systems, each atom in the system is treated as a point with mass

and charge, interactions between atoms are described by simple force rules (Force Field).

The trajectory of the system (i.e., the coordinate and velocity of each atom as a function

of time) are obtained by integrating Newton’s second law of motion

− ∇iU (rN ) = mi
d2ri
dt2

i = 1, · · · , N (1.1)

where mi and ri represent the mass and coordinate of atom i and U (rN ) is the potential

energy of the system that depends on the configuration of the N atoms. The analytical
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form of U (rN ) and the parameters therein are usually referred to as the force filed, which

are usually obtained by fitting to either ab initio calculations or experimental data. A

commonly used empirical force field formulation for the biomolecules has the form:

U (rN ) =
∑
bonds

1
2
kb(l − l0)2 +

∑
angles

kθ(θ − θ0)2 +
∑

torsions

1
2
Vn(1 + cos(nω − γ))

+
1
2

N∑
i=1

N∑
j,i

4εij

(σij
rij

)12

+

(
σij
rij

)6 +
1
2

N∑
i=1

N∑
j,i

qiqj
4πϸ0rij

(1.2)

where rij = |ri −rj| is the distance between atom i and j. The first two terms in Equation 1.2

describe the bond stretching and angle bending energies. The kb, kθ and l0, θ0, are their

corresponding force and equilibrium constants. The third term is the torsion energy. ω,

Vn, n and γ are the dihedral angle, barrier height, multiplicity and phase shift, respectively.

The last two terms represent nonbonded van der Waals and electrostatic interactions. εij,

σij, qi, and ϸ0 are the dispersion well depth, Lennard-Jones diameter, atomic charge, and

the vacuum permittivity, respectively. The reliability of the simulation depends intimately

on the force field. With a well defined force field, the kinetic informations can be accessed

directly from the simulation trajectory at a high degree of accuracy; the thermodynamic

properties could be estimated with statistical mechanics methods.

One of the most important quantities in equilibrium thermodynamics study is the

free energy.[110, 111, 112] In biomolecular systems, The free energies describe the asso-

ciation and reaction abilities of biomolecules, and are closely related to their equilibrium

constants through ∆G = −RT lnK. This quantity can be estimated from the simulation

via equation [113]

G = −kBT lnQ = kBT ln
〈
exp

H(pN , rN )
kBT

〉
(1.3)

where Q =
∫∫
dpN drNeH(pN ,rN )/kBT is the partition function and 〈〉 denotes an ensemble

average. It should be noted that an accurate estimation of free energy requires an ade-

quate sampling in the phase space, which is hampered by the currently available com-

putational power and rugged energy surfaces of bimolecules. For example, the term
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exp(H(pN , rN )/kBT ) in Equation 1.3 implies that high energy regions contributed exponen-

tially to the free energy, while the conventional Molecular Dynamics methods perfer to

explore the low energy regions. For a systems with large energy barriers, the simulation

can be trapped in a local energy minimum that close to the initial conformation during the

whole simulation process, incorrect estimation may be obtained due to the pathological

sampling. Although considerable number of approaches have been proposed to accelerate

the sampling[114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125], an efficient

algorithm for absolute free energy calculation is still in high demand.

An alternative approach is to calculate a free energy difference. Consider two well-

defined states, 0 and 1. For the hydration of a protein cavity, 0 could be the state that

cavity is empty, and 1 could be the state that the cavity is hydrated by a water molecule.

The free energy difference, ∆G, between the two states is given by

∆G = G1 − G0 = −kBT ln
Q1

Q0
= −kBT ln

〈
exp

[
(H1 − H0)/kBT

]〉
0 (1.4)

The subscript 0 indicates the average is taken over the equilibrium ensemble of state 0.

This method was first proposed by Zwanzig in 1954 and is sometimes called Free Energy

Perturbation (FEP) [126]. Although FEP proved to be a effective method to calculate the

free energy difference, it suffers the drawback that the phase space of the two states

must be well overlapped to give an accurate estimation of the free energy difference.

A clever strategy is to introduce some ‘‘intermediate’’ state between 0 and 1, the free

energy difference is calculated consecutively between adjacent states and ∆G is given by

integrating all these free energy differences [127]

∆G =

∫ λ=1

λ=0

〈
∂H(pN , rN )

∂λ

〉
λ

dλ (1.5)

This method is usually referred to as the Thermodynamic Integration method (TI) in the

literature.
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1.6 Overview of the Present Study

The main focus of this dissertation is to understand the thermodynamics of water

molecules in protein cavities, as well as their influences on protein-ligand binding and pro-

tein structure and flexibility. In Chapter 2, the free energy, entropy, and enthalpy of water

molecules at the DNA gyrase/novobiocin interface are calculated, their contributions to

the gyrase-novibiocin binding affinity are discussed. In Chapter 3, the study goes beyond

specific protein systems and is extended to general case. A model of protein cavities that

can accommodate only single water molecules is developed. The hydration thermody-

namics of water molecules in various protein cavities are presented in terms of the cavity

sizes and hydrophobicities. In Chapter 4, Molecular Dynamics simulations are performed

for four proteins with and without bound water molecules in the protein interiors. The

influences of the bound water on protein structure and stability are investigated.
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Chapter 2

Water at the DNA Gyrase-Inhibitor Interface

2.1 Introduction

A recent analysis of the crystal structures reveals that over 85% of the structures

have at least one water molecule at the protein-ligand interface [1]. These water molecules

have significant but not completely understood influences on inhibitor binding thermody-

namics. The introduction of ordered, relative to the liquid, water molecules is generally

considered to have a significant entropic cost, decreasing the binding affinity of the ligand

[2, 3]. This influence can be isolated from other factors by considering changes in the lig-

and or protein which modify the water structure. Differences in binding affinities between

different ligands [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] or the same ligand with mutated

proteins [16, 17, 18] have been attributed to the addition of one or more tightly bound

water molecules. Both these effects are demonstrated in the DNA gyrase/novobiocin com-

plex.

DNA gyrase is a bacterial enzyme which is a target for several antibiotics [19]. The

enzyme from Escherichia coli is an A2B2 tetramer made up of the two subunits A and B.

The antibiotic novobiocin is one in a class of coumarin inhibitors which inhibit gyrase by

preventing dimerization of the two B subunits [20, 21, 22]. For this system, bound water

molecules have been proposed to change the thermodynamics of binding, both by changes
This chapter has been published previously as a paper in the Journal of the American Chemical Society: ‘‘Free

Energies and Entropies of Water Molecules at the Inhibitor-Protein Interface of DNA Gyrase’’.
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Table 2.1: Thermodynamic parameters for the binding of novobiocin and clorobiocin to the
24 kDa fragment of the DNA gyrase B protein for the wild type and Arg 136 His mutant.

complex Ka ∆G0 ∆H0 T∆S0 number of

(x 106 M−1) (kcal/mol) (kcal/mol) (kcal/mol) water molecules

WT-clorobiocina 860±220 -12.2±0.1 -9.5±0.6 2.7±0.2 1

WT-novobiocinb 23±4 -10.1±0.1 -12.2±0.1 -2.1±0.2 3

R136H-novobiocinb 0.83±0.03 -8.1±0.1 -14.3±0.1 -6.1±0.1 4
a Reference [14]
b Reference [16]

in the protein through mutations [16] or by changes in the inhibitor [14]. A mutation of

Arg-136 to histidine on the B fragment is one of the naturally occurring resistant mutants

to coumarin inhibitors [23]. The B fragment with the R136H mutation has an association

constant for novobiocin over an order of magnitude smaller than the wildtype (Table 2.1)

[16]. The binding has a more favorable enthalpy change, ∆Ha, for the mutant but a much

less favorable entropy change, ∆Sa. The structures of the R136H and wildtype of the 24

kDa N-terminal fragment of the B subunit with novobiocin show that the space created

by the absence of the guanidinium group of the arginine residue is occupied by a water

molecule (water 12 in the 1AJ6 pdb structure and in Figure 2.1) [16]. The large change

in Ka is attributed to the presence of this water molecule, which is not present in the

wildtype structure. This water molecule is in contact with the solvent.

The water molecules 1 and 11 are located between the carbonate nitrogen attached

to the sugar ring on novobiocin and polar atoms (on Val 43 and Asp 73) of the protein.

This side of the inhibitor is away from he solvent. For the inhibitor clorobiocin, a pyrrole

ring replaces the NH2 group (Figure 2.2). The bulkier group fills the space occupied by

W 1 and W 11 in the complex with novobiocin [14]. Clorobiocin binds (wildtype) gyrase

over an order of magnitude better than novobiocin, with the improved binding not due

to enthalpy, which favors novobiocin, but entropy. The entropic contribution, −T∆S, is

· 28 ·



Figure 2.1: PDB structure 1AJ6 of the complex of novobiocin with the R136H mutant of
DNA gyrase.

4.8 kcal/mol more favorable for clorobiocin than novobiocin (see Table 2.1). The large

thermodynamic changes between clorobiocin and novobiocin, as well as the between the

wildtype and mutant proteins, appear to be largely due to only a few water molecules

[14, 16].

There are exceptions to the "less water, better binding" heuristic suggested by these

studies, in which compounds with more water molecules at the interface bind with greater

affinity [15]. In addition, several computational studies using free energy perturbation

[24] and inhomogeneous fluid solvent theory [25, 26, 27] have shown that the entropy of

the bound water molecules varies considerably and in some cases can be greater than

that of bulk water. For the related, but distinct, problem of water displacement from

the binding site by the ligand, inhomogeneous fluid solvent theory also finds that the

entropy of water molecules in the empty binding site can vary considerably [28]. This
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Figure 2.2: Chemical structures of DNA gyrase inhibitors.

variability makes assessing the role of water difficult. A number of studies have evaluated

the importance of water molecules using protein-ligand docking and scoring models, with

a general, but not universal, consensus that the inclusion of water improves accuracy

[29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The variability of the entropic contribution from

the bound water presents a challenge for empirical scoring models [31, 34]. For example,

the GOLD scoring model adds a constant entropic penalty term (of 0.5 kcal/mol) for each

bound water [34].

The entropic contribution of the bound water molecules appears to be the key to

understanding the binding thermodynamics for the novobiocin/clorobiocin-DNA gyrase

complex. In this study we use computational methods to calculate the entropy change, as

well as the free energy change, for adding water molecules to the three sites which change

for the various complexes (W 1, 11, and 12). A number of studies have calculated free
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energies for water molecules at protein-ligand interfaces [39, 40, 41, 42] and in protein

cavities [24, 43, 44, 45, 46]. These studies have not calculated the entropy change, except

for our own study, which calculated free energy changes as a function of temperature

to extract the entropy and enthalpy changes [24]. In this study, we will use the same

approach. This calculates the exact thermodynamics, depending only of the quality of the

potential energy function used.

2.2 Methods

2.2.1 Free Energy Calculations

The free energy calculations were done in one of two ways, depending on the prox-

imity of the water molecules to the bulk solvent. These two approaches, the alchemical

‘‘double decoupling method’’, in which interactions are turned on, while a restraining po-

tential is turned off, and a potential of mean force (PMF) approach, in which the molecule

is made to move from the binding site, have both been applied to many binding free en-

ergy calculations, as reviewed recently [47]. The free energy calculations for the water

molecules in the 1 and 11 positions are done with the double decoupling method, as

described previously, except using thermodynamic integration rather than free energy

perturbation theory [24]. In this method, interactions are turned off between the one

bound water molecule and all other atoms in the system. The non-interacting molecule

is localized in the site with a harmonic potential with a force constant, kharm, equal to

3 kcal/mol/Å2. A correction for the harmonic restraint equal to −kT ln[ρ(πkT/kharm)3/2]

is added to the calculated free energy [45, 46, 48]. This method is similar to the meth-

ods developed for other free energy calculations [45, 46, 48] except for the addition of a

short-ranged interaction is added to keep other water molecules out of that position. This

interaction is of the form ϸ(rOX/σ)−12, where rOX is the distance between the position the

water molecule is being added, rx , and the oxygen atoms on all other water molecules. The

parameters σ and ϸ are set equal to 2.0 Å and 0.143 kcal/mol, respectively. To calculate
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the free energy of adding a water molecule to this position relative to the bulk liquid, the

free energy of adding a water molecule to the liquid must be calculated. The free energy for

this process is -7.04±0.04 kcal/mol and the entropy change T∆S is -4.03±0.04 kcal/mol.

For the water molecule in site 12, which is in contact with solvent water molecules, the

PMF approach was used. In this approach, the interactions of the specified bound water

are not turned off, but rather the water molecule is reversibly forced out of the bound

water position using the potential Eλ = λ
∑
i 4ϸ[(r2

ix + (1−λ)δ)/σ2]−6, where the sum is over

all water molecule oxygen atoms and λ is a free energy variable, varying from 0 to 1. This

method uses separated-shifted scaling method, adding the term (1−λ)δ to avoid singular-

ities as rix goes to zero [49]. The parameter δ was set equal to 7.0 Å2 and σ and ϸ have the

same values as given above. This approach was hoped to be more efficient for calculating

hydration free energy changes for water molecules which can move to the solvent easily,

but this turned out to be not the case. It was better to turn off the interactions in the

protein/ligand site and then, in a separate calculation, turn them on again in the liquid,

rather than to force the molecule to exit to the solvent. Free energy calculations for all the

water sites were done at three temperatures, so the entropy could be calculated from the

temperature dependence, using ∆S = −(∆G(T + ∆T ) − ∆G(T + ∆T )/(2∆T ). The enthalpy

change can be found from ∆H = ∆G + T∆S.

2.2.2 DNA Gyrase/Novobiocin Structure

All calculations were done with the R136H mutant of the 24 kDa B subunit frag-

ment of DNA gyrase from Escherichia coli using the 1AJ6 structure for the gyrase/novobiocin

complex [16]. In this structure, there are two loop regions, from residues 83 to 85 and

105 to 111, that are unresolved. These regions were reconstructed using the coordinates

of the 1kĳ structure on the 43 kDa fragment of DNA gyrase from Thermus thermophilus in

complex with novobiocin [50].
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Protonation states of various groups must also be assigned. Novobiocin is an acid

with a pKa equal to 4.3 [51], so the acidic proton, on the phenolic oxygen connected to the

coumarin double ring, is taken to be absent. In addition to the mutant histidine at position

136, the 24 kDa subunit of e. coli DNA gyrase has 11 histidine residues. Based on the pKa

calculations for the wildtype of Schechner et al. [52], we assigned the following protonation

states (residue number, protonation state): 37 HID, 38 HIP, 55 HIE, 64 HIE, 83 HIE, 99

HIP, 116 HIP, 141 HIE, 147 HIP, 215 HIE, and 217 HIP, where HID is the Nδ tautomer,

HIE is Nϸ tautomer, HIP is doubly protonated. This gives a charge for DNA gyrase equal

to -5 and novobiocin adds another negative charge. Due to the overall negative charge,

including the nearby novobiocin negative charge, we took the histidine 137 residue to be

the doubly protonated positively charged form. In addition, in the 1aj6 structure, there

are oxygen atoms (the main chain oxygen on Arg 76 for the Nδ atom and the Oγ on Thr 80

for the Nϸ atom) close to both nitrogens on the histidine ring. Also given that it replaces

an arginine residue, with a positive one charge, a positively charge histidine seemed

the simplest assumption to make. Isothermal titration calorimetry (ICT) measurements

with different buffers find that the enthalpy of binding, ∆H0 for the wildtype/novobiocin

complex is independent of the buffer [16]. The two buffers used (20 mM phosphate buffer

with pH 7.4 and 69 mM Tris-HCl at pH 7.4) have enthalpies of ionization that are different

by 10.5 kcal/mol, so if binding involved proton movement, it will have different ∆H0 values

for the two buffers. For R136H mutant/novobiocin binding, ∆H0 is different for the two

buffers by 3.2 kcal/mol (the values on Table 2.1 are with the Tris buffer) so any proton

changes upon binding must involve a partially ionized group [16]. For all these reasons—

the overall negative charge, the nearby hydrogen bond acceptors, and the fact that the

histidine replaces the positively charged arginine residue—the simplest assumption is that

His-136 is doubly protonated and remains so during binding.
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2.2.3 Simulation Details

All protein molecular dynamics simulations were performed using the Amber7 suite

of programs [53]. Charges for novobiocin were generated from a RESP [54] charge fitting

procedure with input from Hartree-Fock calculations at the 6-31G* level using the Gaus-

sian03 program [55]. Additional parameters were generated using the gaff parameter set

[56]. The charges and gaff parameter type for each atom are given in Supplementary ma-

terial. The TIP4P-Ew model was used for water [57]. Charge neutrality of the system was

created by adding five sodium ions, using the Amber 99 parameter set [58]. The system

contain 7891 water molecules. Simulations were ran in the T,P,N ensemble at a pressure

of 1 atm and temperatures of 283, 298, and 313 K. All bonds containing hydrogen atoms

were constrained with SHAKE, a 1 fs time step was used, and long-ranged electrostatics

were treated with particle mesh Ewald. For the water molecules at positions 1 and 11, 15

λ values were used, each simulated, on average, for 500 ps. For water molecule at site

12, using the different method, 17 λ values were used, each simulated, on average, for

1200 ps.

2.3 Results

Tables 2.2 and 2.3 give the calculated free energy changes for the addition of the

water molecules to the positions labelled in Figure 2.1. The value for W11 is calculated

twice, once with the water at position W1 and once without. The value without the W1

water is listed as W11’ and this value plus that for W1 gives the free energy for the addition

of the two water molecules to the empty cavity. Table 2.2 gives the results for the free

energy calculations at the three temperatures. To the values for the W1, W11, and W11’

sites have been added the harmonic restraint correction [45, 46, 48]. To get the hydration

free energy (the difference between the free energy of a water molecule in the bulk liquid

and in the specified site) for these three sites, the free energy of a water molecule in the
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Table 2.2: The free energies for the addition of a water
molecule to the various positions at different temperatures.

∆G (kcal/mol)

T (K) 283 298 313

W1 -15.12±0.08 -14.73±0.10 -14.44±0.09

W11 -10.26±0.11 -9.87±0.14 -9.67±0.15

W11’ -7.76±0.12 -7.42±0.14 -7.32±0.11

W12 -2.88±0.14 -2.81±0.14 -2.76±0.12

liquid has to be subtracted. For the water in position W12, the method used finds the free

energy difference between that site and bulk water directly. For all water molecules, the

free energy of hydration is negative, indicating that water is stable in that position, the

entropy change is negative, and the enthalpy change is negative. One possible exception

is W11’ water, for which ∆G, ∆H, and ∆S are about zero, and so this water is only stable if

there is a neighboring water at position W1. The large enthalpic change, which outweighs

the unfavorable entropy change, leads to the stability of the water molecules in these

positions.

The average number of hydrogen bonds each water molecule makes to the protein,

the inhibitor, or other water molecules from our simulations (at the endpoint of the free

energy calculation when the water is fully interacting with the rest of the system) is given

on Table 2.3. The Mancera and Buckingham [59] definition of a hydrogen bond is used in

which a hydrogen bond is taken to exist if the oxygen-oxygen distance is less than 3.6Å

and the angle between the O-H vector on the hydrogen bonding donor and the O-O vector

is between 130◦ and 180◦. With this criteria, the water at W1 forms 2.2 hydrogen bonds

on average. One hydrogen bond is made to the water at W11 (W11 acts as the hydrogen

bond donor) and another is made to the Oδ atom of Asp-73 (W1 is the donor). Another
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Table 2.3: Thermodynamic properties for the transfer of a water molecule from the solvent
to the various positions.

∆G ∆H T∆S number of change in

(kcal/mol) (kcal/mol) (kcal/mol) hydrogen bonds hydrogen bonds

W1 -7.7±0.1 -10.5±1.2 -2.8±1.2 2.2±0.1 2.2±0.1

W11 -2.8±0.1 -4.7±1.9 -1.9±1.9 2.9±0.1 1.8±0.1

W11’ -0.4±0.1 -0.1±1.6 -0.3±1.6 1.4±0.2 0.8±0.4

W1+W11’ -8.1±0.2 -10.6±2.0 -3.1±2.0 3.6±0.2 3.0±0.4

W12 -2.8±0.1 -3.9±1.8 -1.2±1.8 2.7±0.1 1.9±0.1

hydrogen bond is made a fraction of the time (0.2) to the Thr-165 O atom. The water at

W11 makes about 3 hydrogen bonds. In addition to the hydrogen bond to the W1 water,

it makes a hydrogen bond to the Val-43 O atom (W11 is the donor) and the another with

one of the amide hydrogens connected to the noviose sugar of the Novobiocin molecule.

The W12 water forms about 3 hydrogen bonds, one with the Gly-77 O atom, one with the

phenolic oxygen on the coumarin double ring on the Novobiocin molecule (which is taken

to be unprotonated, see Methods), both of these as a donor, and a third (made a fraction

0.7 of the time) with a solvent water molecule, as an acceptor. A hydrogen bond with the

Nδ atom on His-136 is rarely made. These hydrogen bonds are indicated in Figure 2.1.

The formation of hydrogen bonds with the water molecules is consistent with the

negative ∆H. Less consistent is the fact that W11 and W12 form the most hydrogen bonds,

about 3, but have a less favorable ∆G than W1, which forms less hydrogen bonds. More

strongly correlated to the free energy is the change in the number of hydrogen bonds, or

the number of hydrogen bonds that form as the water is added minus the number that

are lost. To do this, we identified the atoms which formed hydrogen bonds to the specific

water molecule (those atoms are mentioned in the previous paragraph) and calculated the

number of hydrogen bonds those atoms form with and without the water in that position.
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In all cases, the hydrogen bonds change by fractional amount, rather than through the

formation of new contacts which occur only when the water molecule is absent. For

example, one of the W12 water’s hydrogen bond partner, the Gly-77 O atom, decreases

the number of hydrogen bonds it forms upon the addition of the water by 0.4±0.2, mostly

due to a decrease in the fraction of time a hydrogen bond is made with the His-136 Nδ atom

(from 0.8±0.1 without the water to 0.5±0.1 with water). The Novobiocin phenolic oxygen

atom does not changes its hydrogen bond structure noticeably. The third significant

hydrogen bond partner with the water at site W12 is a solvating water molecule. A water

molecule closest to the position of W12 decreases its number of hydrogen bonds to other

water molecules, not counting W12, from 2.8±0.3 to 2.4±0.1, upon addition of W12. This

means that the gain of hydrogen bonds between W12 and its closest neighbor (made a

fraction 0.7 of the time) is partially offset (by 0.4) by a loss in hydrogen bonds with other

neighboring water molecules. The net effect is that the addition of the W12 water leads to

an increase in hydrogen bonds by only 1.9 rather than 2.7.

The hydrogen bond neighbors of water W11 also change the number of hydrogen

bonds with other atoms as this water is added. W11’s neighbor Val-43 O shows a decrease

in the fraction of the time a hydrogen bond is made to other protein atoms (a hydrogen

bond to the Asn-46 N-H changes from 0.46±0.08 to 0.10±0.04 and to the Ala-47 N-

H changes from 0.5±0.1 to 0.19±0.07). The amide N atom on novobiocin, which also

hydrogen bonds to W11, does not show any appreciable change in hydrogen bonds upon

addition of W11. The third hydrogen bond partner of W11 is W1. This water shows a

decrease of 0.5±0.3 in hydrogen bonds with other atoms as W11 is added. This decrease

is mostly due to a loss in a hydrogen bond with the Thr-165 O atom, which changes from

0.4±0.2 to 0.09±0.04. This all leads to a net change in hydrogen bonds equal to 1.8±0.1.

When the W11 is added without the water W1 there (in the change labelled W11’), a similar

analysis reveals that the hydrogen bonded neighbors lose 0.6±0.3 as the 1.4±0.2 hydrogen

bonds are made to give a net change in hydrogen bonds equal to 0.8±0.4 hydrogen bonds.
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For the W1 water, no hydrogen bonds are lost as that water is added so that the change

in hydrogen bonds is simply 2.2±0.1.

These hydrogen bond changes are shown on Table 2.3 and show a stronger cor-

relation with ∆G than simply the number of hydrogen bonds made. This analysis helps

to explain why the W1 position has more favorable ∆G than the W11 and W12 positions,

because while water molecules at both those positions make more hydrogen bonds with

their neighbors, they also disrupt more hydrogen bonds, leading to a smaller change in

hydrogen bonds than at the W1 position. (In addition, the water at position W1 makes

a hydrogen bond with the negatively charged Asp-73 Oδ atom, so this hydrogen bond is

stronger than average, with a more favorable ∆H.) Both the entropic contribution to the

free energy, T∆S, which increases, and the enthalpy, which decreases, show a correlation

with the change in the hydrogen bonds.

2.4 Conclusion

The calculations find that the addition of the water molecules to the protein-ligand

interface is entropically unfavorable. The resulting T∆S values are -1.1±1.8 kcal/mol

for the water at position W12 and -3.1±2.0 kcal/mol for the addition of the two water

molecules at sites W1 and W11 (see Figure 2.1). These can be compared to the difference

in the entropy changes for the binding of novobiocin or clorobiocin to the wildtype or

R136H mutant of DNA gyrase. The R136H mutation introduces the W12 water to the

novobiocin/gyrase interface and results in a decrease in T∆S equal to 4.0±0.2 kcal/mol.

Our calculations suggest that 1 kcal/mol of this is due to the ordered water. The binding

of clorobiocin, which eliminates the W1 and W 11 water molecules, results in a decrease

in T∆S equal to 4.8±0.2 kcal/mol, of which our calculations would suggest that 3.1

kcal/mol of that is due to the two water molecules. Taken together, our results indicate

that a sizable fraction, but not all, of the entropic differences in the binding of ligands

involving different numbers of water molecules is directly due to the water molecules.
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The range of values of the entropy changes show that not all water molecules

would have the same entropic penalty to the binding thermodynamics of ligands. This

variability is in agreement with earlier theoretical studies using free energy perturbation

[24] and inhomogeneous fluid solvent theory [25, 26, 27] as well as conclusions drawn

from experimental data on protein stability [60]. The water molecules considered in this

study form different numbers of hydrogen bonds with neighboring atoms, including other

water molecules, the protein, and the inhibitor. However, the free energy, entropy, and

enthalpy changes correlate more strongly with the change in the hydrogen bonds made

as the water molecule is added, rather than the number of hydrogen bonds the water

makes (see Table 2.3). The number of hydrogen bonds change by an amount different

from that directly involving the added water because the added water disrupts the local

hydrogen bonds that are formed in the absence of this water molecule. This disruption is

due to hydrogen bonds, made both with and without the water, that are made less often

when the water is there. The presence of the water gives the neighboring atoms another

hydrogen bond partner and this appears to decrease the probability that other hydrogen

bonds are made. This change in the local hydrogen bond structure has previously been

reported for water molecules in protein interiors [24] and indicates that the entropy change

for localizing a water molecule at a specific site, with a loss of conformational freedom,

is partially offset by a gain in conformation freedom of the nearby atoms involved in the

hydrogen bonds.

For the design of drugs, having a water molecule with more than two hydrogen

bonds is entropically unfavorable and it would be better to modify the ligand to eliminate

the water or to reduce the number of hydrogen bonds that water can make. A fit to our

data suggests that T∆S should decrease by an amount of 1.7 kcal/mol for each hydrogen

bond made by the addition of the water molecule. This is very close to the value of 1.6

kcal/mol by Cooper, an estimate based on the loss of degrees of freedom of a bound water

for each hydrogen bond made [61]. Although there is no reason for the entropy change to
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have a linear dependence on the number of hydrogen bonds, each hydrogen bond will limit

rotational and translational freedom, consistent with a decrease in entropy. Analyses of

crystal structure B factors for bound waters in protein interiors [62] and at protein-ligand

interfaces [1] reveal that the water molecules become more localized as hydrogen bonds

are made, but the decrease is not linear. The decrease is large as each of the first three

hydrogen bonds are made and adding the forth has little or no effect on the B factor,

suggesting that there is little entropic penalty for forming the fourth hydrogen bond. For

the range of hydrogen bonds made for by water molecules in the present study (one to

two), the T∆S changes from about 0 to -2 kcal/mol. The hydrogen bond numbers of

these three water molecules are fairly typical of water molecules found at protein/ligand

interfaces. The analysis of crystal structures by Wang, et al., reveals that water molecules

at protein/ligand interfaces form on average three hydrogen bonds, with two being almost

equally likely [1]. The entropies, as well as the free energies, of the water molecules in

this study may be therefore fairly representative of water molecules commonly found in

protein/inhibitor complexes, but the values for specific molecules will depend on their

local environment.
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Chapter 3

Water in Various Protein Cavities

3.1 Introduction

Space due the packing arrangements of folded proteins or the binding geometries

of protein-ligand or protein-protein complexes can be occupied by water molecules [1, 2,

3, 4]. Protein interiors contain on average one water molecule for every 27 residues, as

identified by X-ray crystallography, nuclear magnetic resonance, and neutron diffraction

experiments [1]. Water molecules are about as common inside membrane proteins as

inside water soluable proteins [5] and at the protein-ligand interface, there is at least

one water molecule in over 85% of crystal structures [4]. These water molecules have

important influences on protein function and stability. For example, in a recent study

mutations which change the hydrogen bonding of one internal water molecule lead to

structural changes in a distant binding pocket [6]. In ligand binding, the addition of one

water molecule can increase binding affinity by a factor of 10 or more [7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20]. The water molecules are found in a wide variety of

local environments. The number of polar contacts a water makes, either with other water

molecules, the protein, or a ligand, varies from zero to about five, with most having two

or three [1, 2, 4]. Most water molecules then form less than the four hydrogen bonds

possible. This is reflective of the types of cavities available to water molecules but also,
This chapter has been published previously as a paper in the Journal of Physical Chemistry B: ‘‘Free Energy, Entropy,

and Enthalpy of a Water Molecule in Various Protein Environments’’.
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possibly, indicative of the way proteins have evolved to include water. It may be that having

fewer than four hydrogen bonds to interior water molecules is beneficial to function or to

binding.

A number of studies have calculated free energies for water molecules in protein

cavities [21, 22, 23, 24, 25] and at protein-ligand interfaces [26, 27, 28, 29, 30, 31]

using free energy perturbation, thermodynamic integration or similar methods. From

these studies, some ideas about what stabilizes bound water have emerged. Zhang and

Hermans concluded that the water-protein energy must be lower than -12 kcal/mol in

order for the site to be occupied [23]. Olano and Rick calculated the free energies for two

water molecules, one which make only one hydrogen bond and another which can make

four, and found that only the later should be stable [25]. This is consistent with the results

of Barillari et al., who calculated free energies for a variety of different water molecules at

the ligand-protein interface [29]. That study found that water molecules which formed only

two hydrogen bonds only had a weakly negative free energy (of about -1 to -2 kcal/mol)

while those with more hydrogen bonds were much more stable. In another study, the

free energies of bound water at the protein-ligand interface were found to depend on the

change in the number of hydrogen bonds due the presence of the water, rather than just

the number of hydrogen bonds made with the water [30]. The protein can adjust to the

loss of the water and increase by a small amount the number of protein-protein hydrogen

bonds.

Note that a protein-water energy of -12 kcal/mol is less than the energy to remove

a water molecule from the liquid phase (-10 kcal/mol) implying that there is an entropic

contribution of about 2 kcal/mol to be overcome. Estimates entropic cost based on the

entropy difference between ice or crystalline hydrate salts and water also give a value

of 2 kcal/mol [32]. The entropy change, like the free energy change, is dependent on

the local environment. Simulation results find that the entropy contribution to the free

energy, −T∆S, varies from 3 kcal/mol in a hydrophilic, hydrogen bonding, environment
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to -5 kcal/mol in a hydrophobic environment [25, 30]. This increase in entropic cost

as the number of hydrogen bonds increases suggests that a balance between entropy

and enthalpy may help make water molecules stable in environments with less than the

optimal number of hydrogen bonds. These free energy calculations using free energy

perturbation or thermodynamic integration represent exact free energies, subject only the

accuracy of the potential models. Other more approximate methods have been used to

understand the entropy of the bound water molecules. Simple theoretical estimates using

the entropy of melting of ice give that −T∆S should increase by 1.6 kcal/mol for each

hydrogen bond [33]. Calculations using inhomogeneous fluid solvent theory find that

−T∆S of bound water molecules can vary from 3, greater than the Dunitz estimate, [32]

to -0.5 kcal/mol [34, 35, 36]. These results show a good correlation with the number of

hydrogen bonds the water molecule forms, although the correlation is not perfect [36]. In

general, the water molecules with more hydrogen bonds have a lower entropy, but there

are some exceptions and some water molecules with the same number of hydrogen bonds

can have much different entropies.

A single water molecule does not appear to occupy cavities that are purely hy-

drophobic with no possibilities for hydrogen bonds [23, 25, 26]. Only as the cavities get

larger and can hold more that one water molecule, can non-polar cavities be occupied by

water [37, 38]. The free energy calculations of Vaitheeswaran et al. for water in non-polar,

graphine-like spherical cavities of various diameters found that the smallest cavity con-

taining water is 1.0 nm in diameter and contains three water molecules [37]. The stability

of the water molecules in these cavities is sensitive to the interactions between the water

molecules and the atoms comprising the cavity wall. In addition, there is a change from

being entropically favorable to entropically unfavorable as the number of water molecules

increases. The minimum cavity size for a non-polar cavity is consistent with the results

of Roux and coworkers, who found that a hydrophobic cavity in the bacteriorhodopsin

proton channel contains four water molecules [24]. Other studies have revealed that large
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hydrophobic pores in proteins are apparently unoccupied by water [39, 40, 41]. A nar-

row, "sock" shaped, pocket in the mouse urine protein large enough to hold five water

molecules was proposed, based on NMR, molecular dynamics, and isothermal titration

calorimetry results, to contain no water [39]. Water inside this pocket was found to be

enthalpically unfavorable but entropically favorable. In another study using molecular

dynamics, water was found to be absent from a narrow, hydrophobic tube-shaped pore,

large enough to hold seven water molecules, in the COX-2 protein [40]. Adding water to

this site was also predicted to be enthalpy unfavorable. Similarily, NMR and simulation

data reveal that a large 315 Å3 binding pore, big enough to hold five water molecules,

in bovine beta-lactoglobulin is completely empty of water [41]. Other comparably sized

hydrophobic pockets may contain water. The bowl-shaped deep-cavity cavitand molecule

contains about four water molecules, as revealed by MD simulations [42]. In this case,

adding water is enthalpically favorable and entropically unfavorable. Shape, as well as

size and the strength of the interactions, appears to have a strong influence on the stability

of the water molecules.

In the present study, we are considering only cavities large enough to hold one

water molecule, with the goal of understanding how the free energy, entropy, and enthalpy

change as the cavity changes in hydrophilicity and size. To allow for control over the

details of the cavity, model cavities are made of the regions in direct contact with the

water. Atoms beyond this local region will be treated approximately, taking into account

electrostatic and Lennard-Jones interactions. Everything specific about a particular cavity

environment in this model is in the local region, the non-local region is described using

average properties of proteins. This allows for predictions of the thermodynamics of bound

waters based on local details of the cavity, such as the number of hydrogen bonds or the

volume. It has been demonstrated, however, that non-local interactions can influence the

free energy of binding [28]. The free energy calculations of Lu et al. on the binding of

a water molecule at the interface between HIV-1 protease and an inhibitor find that the
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protonation state of an aspartic acid residue not in direct contact with the water changes

the free energy of the water by about 1 kcal/mol [28]. The deprotonated, charged, state

gives a more favorable free energy. Other non-local contributions to the free energy are

purely entropic, coming from changes in the vibrational entropy. The addition of a water

molecule appears to change the flexibility of the protein, either increasing or decreasing it

[25, 43, 44, 45], but this change is not limited to parts of the protein near the water [25].

The binding of ligands other than water also appears to change the flexibility of a protein

[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and these changes also involve non-local regions

of the protein. Studies using MD and NMR have shown that local regions may get less

flexible and some non-local regions more flexible upon binding ligands, to give partially

compensating contributions to the entropy change [46, 47, 48, 50, 51, 52, 53, 54, 56].

Despite the limitations from our treatment of the non-local regions of the protein, the

protein cavity models should provide insight into the various environments surrounding

water molecules.

The protein cavity models will allow us to determine how the free energy, entropy,

and enthalpy change as the number of hydrogen bond partners changes and as the size

of the cavity changes. We will examine if hydrogen bond donors and hydrogen bond

acceptors affect the thermodynamics differently. We will also use different potential models

to determine how this influences the results.

3.2 The Cavity Model

In this study, we assume that the interactions of a bound water molecule with

the atoms making up the cavity are the most important, while the interactions with the

rest of the protein and the solvent are less important. This greatly reduces the size

of the calculations from thousands of atoms to less than a hundred. In addition, we

can construct environments that represent average protein environments which are only
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specific to a particular protein at the local level. Following this assumption, the protein is

represented only by the cavity residues, as shown in Figure 3.1.

H2O

a
b

c

ε

Figure 3.1: The protein cavity model: a is the radius of the local region, b = rCi − rcm, and
c = rOW − rcm, where rCi is the position of carbon atom in the ith molecule, rOW is the position
of oxygen atom in water molecule, and rcm is the center of the cavity. The grid shows the
regions that are inside the cavity. Note the sphere representing the water molecule is not
to scale.

In our simulation, the cavity residues are further simplified and represented by

small molecules. For an absolute hydrophobic environment, surrounded by hydrophobic

residues, the cavity is modeled by 12 methane molecules. In the case of alanine residues,
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the charges on the atoms of methane molecule are the same as those of alanine atoms

in the OPLS-AA force field. More hydrophilic cavities are constructed by replacing one or

more methane molecule(s) with formaldehyde or methanol molecule(s). These mimic the

alcohol containing residues serine, threonine, and tyrosine, and the carboxyl group in the

amide on the peptide backbone as well as the glutamine and asparagine resides. These two

molecules were chosen to give both hydrogen bond donors and acceptors. Formaldehyde

acts only as a hydrogen bond acceptor and methanol can be a donor or acceptor.

To maintain the shape of the cavity, a constraint potential is applied, ucav =

kcav
∑
i(|rCi − rcm | − R)2, where kcav = 3.6 kcal/mol/Å2 is the force constant, rCi is the

coordinate of the carbon atom in ith residue molecule, the sum over i is for all the cavity

residues, rcm =
∑
i rCi is the center of the cavity, and R is the designated radius of the

cavity. In simulations, a radius of 3.614 Å is used, since this gives a volume similar to the

volumes of protein cavities containing a single water molecule. Other values of R are used

as well to examine the effects of cavity size. Since methane molecules are roughly spheri-

cal, no orientational restraints are necessary, but to facilitate the formations of hydrogen

bonds with the formaldehyde and methanol molecules, and to represent the rigidity of

the corresponding groups in proteins, additional harmonic constraints are applied on the

carboxyl or hydroxyl oxygens. This is of the form udir = kdir
∑
j(|rcm − rOj | − ROj )2, where

kdir = 3.0 kcal/mol/Å2 is the force constant, the sum over j is over all oxygen atoms in

the cavity residues, rOj is the position of the jth oxygen atom, and ROj is the equilibrium

distance of jth oxygen atom to the center of the cavity. The value of ROj is chosen so that

the residue can make hydrogen bond with the water molecule in a conformable pose. The

restraints are similar to the restraints on orientational motion that the hydrogen bonding

groups would feel as part of a protein. Another restraining potential is added to the water

oxygen, ures = kres(|rOW − rcm |/R)12, ensuring that the water molecule remains inside the

cavity during the course of simulation, where kres = 3.0 kcal/mol/Å2 is the force constant

and rOW is the position of water oxygen.
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The non-local environment (the shaded region in Figure 3.1) is treated separately,

with contributions to the free energy that are added after the free energy calculations.

These contributions come from the electrostatic and Lennard-Jones interactions. The

electrostatic contribution is treated using a dielectric continuum model for the non-local

region. The contribution to the free energy is given by the Kirkwood-Onsager equation

∆GKO = −
1
2

[
2(ϸ − 1)
(2ϸ + 1)

]
µ2

a3 (3.1)

where ϸ is the dielectric constant of the protein, taken to be 20, µ is the dipole moment

of the water molecule, and a is the radius of the entire local region, which is given by the

"real" radius of the cavity 〈r〉 plus 1.88 Å, the radius of the methyl group [57]. This value of

the dielectric constant is in the middle of the range of dielectric constants calculated from

protein simulations and estimated from pKa and other measurements [58, 59, 60, 61, 62,

63]. Our results are not too sensitive to the dielectric constant used. Using the dipole

moment for the TIP4P model (2.18 Debye) and a radius of 5.80 Å, equation 3.1 gives -0.07

kcal/mol with an ϸ of 2 and -0.17 kcal/mol with an ϸ of 50. The real radius 〈r〉 is taken to

be the average of the distances of the carbon atoms in the cavity residues to the center of

the cavity. It should be noted that 〈r〉 is a little larger than the designed radius R, implying

a repulsive interaction between residues, and it varies for different types of cavities even

though they may have the same designed radius. For the polarizable model, the average

value of µ from the simulations is used. Rigorously, because there is an interaction

between the dielectric continuum and the polarizable molecules, there will be coupling

between the local and non-local free energies. The dielectric continuum will polarize the

water and the cavity molecules, changing the interactions with each other. This coupling

is not present for non-polarizable models. Our treatment neglects this coupling, but it

turns out the coupling is weak and ∆GKO is sufficiently small that neglecting this coupling

will not have a noticeable effect on the free energies. This correction is taken to be purely

enthalpic and so contributes to the ∆H only.
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The non-local Lennard-Jones contribution to the free energy is treated by adding a

long-ranged correction to the energy [64, 65],

ELJ = 2πρ
∑
i

wi

∫ ∞

a
4ϸoi

[(σoi
r

)12
−

(σoi
r

)6
]
r2dr

= 8πρ
∑
i

wiϸoiσ
3
oi

[
1
9

(σoi
a

)9
−

1
3

(σoi
a

)3
]

(3.2)

where ρ is the average number density for proteins, wi is the probability of finding a atom

of type i in proteins,ϸoi and σoi are the Lennard-Jones interaction parameters for atom of

type i with the oxygen atom of the water molecule, a is the radius of local region, and the

sum over i is over all protein atom types. The probabilities wi are found from the average

occurrence of each of the twenty amino acids[66] and the composition of each amino acid

in terms of the 27 atom types. The equation wi =
∑
j PjP(i |j) is used to calculate this

weighting probability, where Pj is the occurrence of amino acid type j and P(i |j) is the

probability of finding atom type i in amino acid type j, and the sum over j is over all

twenty amino acids. Values of wi are given in the Supplementary Information. The OPLS-

AA force filed parameters are used [67] and the interaction parameters between different

atom types are calculated from the combining rules (ϸoi =
√
ϸoϸi and σoi =

√
σoσi ). The

number density of proteins is calculated from equation ρ = ρm/
∑
i miwi, where ρm = 1.35

g/cm3 is the average mass density of proteins [68], and mi is the mass of atom type i.

This correction contributes to the free energy as ∆GLJ=ELJ , so this correction is taken to

be purely energetic.

3.3 Methods

A three-step method was used for the hydration free energy simulations, as de-

scribed elsewhere [23, 24, 25, 30, 69]. In this method, the free energies for three processes

are calculated: (1) the free energy ∆Gwat for transferring a water molecule from the liquid

to the gas phase, (2) the localization free energy ∆Gloc for constraining a gas phase water
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molecule in the binding site in the absence of interactions with the cavity atoms, and

(3) the free energy ∆Gint for the localized, non-interacting water molecule to become fully

interacting with the protein cavity. Gas phase for these processes means non-interacting

and free to move throughout the system. The hydration free energy of the protein interior

cavity, ∆Ghyd, is the sum of these three terms, plus the non-local correction. Both a non-

polarizable model with OPLS all-atom force field [67] and TIP4P water [70] and polarizable

model with fluctuating charge(FQ) force field [71, 72] and TIP4P-FQ water [73] were used

in our simulations.

The simulations for free energies ∆Gwat were performed in T, P, N ensembles at a

pressure of 1 atm and temperature of 298 K. The Anderson barostat and Nosé-Hoover

thermostat were employed to control the pressure and temperature [74, 75, 76]. The

calculations were run in cubic boxes with 256 TIP4P or TIP4P-FQ water molecules. Lang

range electrostatic interactions were treated with Ewald summation [64]. All bonds were

constrained by the SHAKE algorithm with a 1 fs time step [77]. The separated-shifted

scaling method was used to avoid singularities.[78, 79] The free energies were calculated

by using of the thermodynamic integration with 16 λ values ranging from 0.001 to 1.0

and 2.5 ns simulation for each λ. The enthalpy changes were calculated from ∆Hwat =

〈E + PV 〉/N at point λ = 1.0, where N is the number of water molecules in the primary

simulation box, E is the total energy, P and V are pressure and volume of the system. The

enthalpy changes are 9.866±0.003 for TIP4P and 9.909±0.005 for TIP4P-FQ. The entropy

changes were found from −T∆Swat = ∆Gwat − ∆Hwat. In our simulations, the free energy

changes, ∆Gwat, are 6.14 ± 0.03 kcal/mol for TIP4P water and 5.97 ± 0.08 kcal/mol for

TIP4P-FQ water. The corresponding entropy changes, −T∆Swat, are −3.72±0.03 kcal/mol

and −3.94 ± 0.08 kcal/mol, respectively. These results are in good agreement with the

experimental values of ∆Gwat = 6.3 kcal/mol and −T∆Swat = −3.6 kcal/mol [80], and with

other free energy calculations of 6.5 ± 0.4 kcal/mol and 6.1 ± 0.3 kcal/mol for TIP4P

water [29, 81].
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For the localization free energy, if a gas phase water molecule is localized in the

binding site with a harmonic potential, the localization free energy is given by ∆Gloc =

−kT ln[ρ (πkT/kharm)3/2], where k is Boltzmann’s constant, T is temperature, ρ is the bulk

density of water, and kharm is the force constant [23, 24, 69]. A harmonic potential with

a force constant equal to 3.0 kcal/mol/Å2 gives a free energy ∆Gloc of 2.44 kcal/mol and

a entropy change −T∆Sloc of 1.59 kcal/mol at temperature 298 K. The value of kharm

is chosen for numerical convenience and results for the total free energy of adding a

water molecule to the cavity will be independent of kharm. Any changes in kharm will have

completely compensating effects on ∆Gloc and ∆Gint.

To calculate the free energy ∆Gint, the alchemical free energy calculation method

was used, with a λ scaled potential given by

Uλ = kcav
∑
i

(∣∣∣rCi − rcm
∣∣∣ − R)2

+ (1 − λ) kharm
(
rOW − rcm

)2

+kres

(
rOW − rcm

R

)12

+ kdir
∑
j

(|rcm − rOj | − R
O
j )2

+λ

∑
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4ϸoi

(σoi
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qiqk
rik


+

∑
i

∑
l

(σil
ril

)12

−

(
σil
ril

)6 +
∑
i

∑
l

qiql
ril
, (3.3)

where the subscript o in 5th term denotes the water oxygen, the sum over i and l are for

all cavity atoms, the sum over j is for all cavity oxygen atoms, and the sum over k is for

water sites, except the oxygen atom (which does not have a charge in the models used

here). The parameter λ therefore scales the interactions of the hydration water molecule

with cavity residues while simultaneously scaling the harmonic localizing term. As λ goes

from 0.0 to 1.0, the interactions between the water molecule and the cavity residues are

turned on while the localizing harmonic potential is turned off, and a fully hydrated state

is achieved at λ = 1.0. The free energy ∆Gint and entropy −T∆Sint are evaluated from the
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thermodynamic integration equations

∆Gint =

∫ 1

0

〈
∂Uλ
∂λ

〉
λ

dλ (3.4)

and

− T∆Sint =
1
kT

∫ 1

0

(〈
Uλ
∂Uλ
∂λ

〉
− 〈Uλ〉λ

〈
∂Uλ
∂λ

〉
λ

)
dλ (3.5)

where T is the temperature, and

∂Uλ
∂λ

=
∑
i

4ϸoi

(σoi
roi

)12

−

(
σoi
roi

)6 +
∑
i

∑
k

qiqk
rik
− kharm

(
rOW − rcm

)2
(3.6)

The simulations where preformed at a constant temperature of 298 K, without periodic

boundary conditions. The temperature was regulated by Nosé-Hoover chain thermal bath

with 3 chains for cavity residues and 3 chains for the hydration water molecule to avoid

the ‘‘hot solvent/cold solute" problem [82, 83]. All bonds were constrained with SHAKE

[77]. A 1 fs time step was used for nonpolarizable model and a 0.5 fs time step was used

for polarizable model. For each cavity, from 14 to 18 λ values ranging from 0.0001 to 1.0

was used, with 2.5 ns simulation for each λ value.

Solvent accessible volumes of the cavities were calculated with a probe of radius

1.4Å. In a volume calculation, all atoms in the residue molecules except hydrogens are

first mapped onto a 3D grid with spacing of 0.1 × 0.1 × 0.1 Å3. Volumes for these atoms

are found by adding the radius of the probe molecule to the atomic radii of the atom.

Subsequently, the grid sites within the convex polyhedron formed by the cavity-defining

atoms are identified as cavity sites if they are not within the extended volume of the

atoms. For our model cavities, the cavity-defining atoms used to calculate the volume are

the carbon atoms. For comparison we also calculated volumes for proteins, which used

all heavy atoms within 5 Å distance of the binding waters oxygens. The atomic group radii

used in our calculation are taken from VOIDOO [84] and listed in Table 3.1.
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Table 3.1: Atomic group radii used for cavity volume calculations.

Atomic Group CH/C CH2 CH3 N/NH O OH S

Radius (Å) 1.85 1.925 2.00 1.75 1.60 1.65 2.00

3.4 Results

The cavities are changed by introducing more hydrogen bonding molecules, keeping

the size roughly constant, and by changing size, keeping the molecules the same. These

variations are done with both non-polarizable and polarizable models. The results for the

cavities with a radius of about 3.9 Å are shown in Table 3.2, using a non-polarizable model

and Table 3.3 using a polarizable model. The cavities all contain twelve total molecules

(in addition to the water molecule). The composition of the cavities is indicated in the

first column, where ‘‘F’’ stands for formaldehyde and ‘‘M’’ stands for methanol and the the

number before each letter indicates how many methane molecules have been replaced by

a formaldehyde or a methanol molecule. For example, ‘‘1F3M’’ is a cavity with 8 methane,

1 formaldehyde, and 3 methanol molecules and ‘‘0F0M’’ is made up of only 12 methane

molecules. The non-local corrections to the free energies are given in the Supplementary

Information. These corrections depend on the size of the cavity and the dipole moment

of the water molecule, which depends on the type of cavity for the polarizable model.

The corrections are small for all cavities, about -0.55 kcal/mol. In the hydrogen bond

analysis, the Mancera and Buckingham definition is used in which the oxygen-oxygen

distance must be less than 3.6Å and the angle between the O-H vector on the hydrogen

bonding donor and the O-O vector must be between 130◦ and 180◦ [85]. For most of the

cavities considered, the change in the number of hydrogen bonds is simply the number

of hydrogen bonds made between the water molecule and the molecules making up the

cage. It is also important to consider how the hydrogen bonds between cage molecules

change as the central water is added [30]. Only for the smallest cavities and for cavities
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Table 3.2: Hydration thermodynamics for cavities with different hydrogen bond
forming molecules, calculated from the non-polarizable model.a

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F0M 0.00(0) 3.614 3.931(3) 6.08(3) -2.17(3) 8.25(2) 96.6(3) 0.36(1)

1F0M 0.91(1) 3.614 3.929(4) 4.03(3) -0.45(4) 4.48(4) 88.2(6) 0.30(1)

0F1M 0.89(1) 3.614 3.946(5) 3.42(3) 0.20(5) 3.22(4) 90.2(6) 0.33(1)

2F0M 1.86(2) 3.614 3.935(4) 2.16(3) 1.64(7) 0.52(7) 80.4(4) 0.28(1)

1F1M 1.84(4) 3.614 3.946(6) 1.85(3) 1.61(6) 0.24(5) 82.2(2) 0.28(1)

0F2M 1.84(3) 3.614 3.960(4) 1.18(3) 1.91(6) -0.73(6) 83.6(6) 0.29(2)

2F1M 2.91(1) 3.614 3.939(4) -0.66(4) 4.3(1) -5.0(1) 74.5(5) 0.29(1)

1F2M 2.88(1) 3.614 3.960(3) -1.03(4) 4.1(1) -5.1(1) 76.6(5) 0.28(2)

0F3M 2.79(2) 3.614 3.983(3) -1.38(4) 3.92(9) -5.30(9) 78.7(4) 0.27(1)

2F2M 3.88(3) 3.614 3.956(2) -1.69(5) 7.1(1) -8.7(1) 68.9(3) 0.27(3)

1F3M 3.84(1) 3.614 3.978(3) -2.50(4) 6.0(1) -8.5(1) 71.0(4) 0.27(1)

0F4M 3.78(1) 3.614 3.998(2) -3.21(4) 5.51(8) -8.72(8) 73.8(3) 0.26(1)
a The letter "F" indicates a formaldehyde molecule and the letter "M" indicates a methanol molecule. The numbers

before the letters indicate how many of twelve methane molecules have been replaced by the corresponding molecule.

which can hydrogen bond with themselves (that contain at least one methanol and at

least one other methanol or formaldehyde molecule) are changes in cage-cage hydrogen

bonds seen. For the 1F3M cavity with a designed radius R equal to 3.346 Å introducing

a water reduces the cage-cage hydrogen bonds by -0.34±0.03. This is the largest change

in hydrogen bonds seen.

The results from Tables 3.2 and 3.3 show a strong correlation with the number of

hydrogen bonds. The free energies are positive for those cavities forming less than two

hydrogen bonds and negative for those with more. The entropic contribution is negative for

the hydrophobic cavities and becomes larger as the number of hydrogen bonds increases.

The enthalpy changes from being positive to negative as the hydrogen bonds increase.

These results are consistent with earlier studies.[25, 30] The free energies, enthalpies, and

entropies of hydration as a function of the number of hydrogen bonds the water makes

with the cavity are shown in Fig. 3.2. This is the data for the non-polarizable model
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Table 3.3: Hydration thermodynamics for cavities with different hydrogen bond
forming molecules, calculated from the polarizable model.

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F0M 0.00(0) 3.614 3.943(5) 4.57(8) -1.85(8) 6.42(2) 98.7(7) 0.32(1)

0F1M 0.86(2) 3.614 3.955(3) 2.96(8) 0.03(9) 2.93(4) 91.8(5) 0.29(1)

0F2M 1.83(3) 3.614 3.967(3) 1.31(8) 2.1(1) -0.78(6) 85.3(5) 0.27(1)

0F3M 2.73(2) 3.614 3.979(2) -0.72(8) 3.6(1) -4.3(1) 78.9(2) 0.26(1)

0F4M 3.82(1) 3.614 3.988(1) -2.66(8) 6.2(1) -8.8(1) 71.8(1) 0.23(1)

from Table 3.2. For comparison, results from previous calculations for water in protein

interiors and at the protein-ligand interface are shown. We chose the systems closest to

our model cavities, with cavities that contain a single water molecule, not in direct contact

with other water molecules, and also not in direct contact with charged groups. We also

chose systems for which the number of hydrogen bonds was well characterized. We used

the BPTI and I76A mutant of barnase systems previously studied in our lab [25], for

which we calculated the number of hydrogen bonds using the Mancera and Buckingham

definition, as we did for the model cavities. The other systems are for the same water at the

interface between HIV-1 protease and two different inhibitors [27, 28]. As mentioned in the

introduction, the free energy of one of those water molecules depends on the protonation

state of aspartic acid residues not in direct contact with the water. Both those values

are shown. For the HIV-1 protease systems, Lu et al. reported the average number of

hydrogen bonds, although they did not describe how a hydrogen bond was defined [28].

These values are given in Table 3.4. Only the study of ref [25] calculated the separate

entropy and enthalpy contributions.
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Figure 3.2: Values of ∆G, −T∆S, and ∆H for the model cavities as a function of the
number of hydrogen bonds formed (blue diamonds) using the non-polarizable potential
model. The lines are linear fits to the data. The blue circles show previously calculated
values for specific protein environments: bpti [25], barnase [25] HIV-1 protease/KNI-272
[27, 28], and HIV-1 protease/ABT-538 [28]. Except as shown, the error bars are smaller
than the data symbols.

The free energies, entropies, and enthalpies all show a strong correlation with the

number of hydrogen bonds. The linear fits are given by

∆G(xhb) = 5.7 kcal/mol − (2.3 kcal/mol) xhb (3.7)

−T∆S(xhb) = −2.1 kcal/mol + (2.1 kcal/mol) xhb (3.8)

∆H(xhb) = 7.9 kcal/mol − (4.4 kcal/mol) xhb (3.9)
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Table 3.4: Hydration free energy data from previous studies, with cavity
volumes calculated in the present study.

PDB change in ∆Ghyd −T∆Shyd ∆Hhyd Volume

code hydrogen bonds (kcal/mol) (kcal/mol) (kcal/mol) (Å3)

1BRIa 0.88 4.8(1) -5(3) 10(3) 100.4

5PTIa 3.52 -4.5(1) 3(3) -9(3) 61.3

1HPXb 3.2 -1.9(4) 78.9

1HPXb 3.2 -3.1(6) 78.9

1HXWc 3.9 -3.8(4) 82.3
a Reference [25]
b Reference [28]
c Reference [27]

where xnb is the number of hydrogen bonds. The free energy also appears to depend

not just on the number of hydrogen bonds, but, to a lesser degree, the type of hydrogen

bonds. Among the cavities with roughly equal numbers of hydrogen bonds, the free energy

is lowest for cavities with relatively more methanol and fewer formaldehyde molecules

(Table 3.2). For methanol neighbors, the water molecule can act as both a hydrogen bond

donor and a hydrogen bond acceptor (see Supplementary material) and the entropy for

the cavities containing methanol is higher than those containing formaldehyde.

The results for the polarizable model are plotted on Fig. 3.3. The linear fits to the

polarizable results are

∆G(xhb) = 4.6 kcal/mol − (1.9 kcal/mol) xhb (3.10)

−T∆S(xhb) = −1.8 kcal/mol + (2.1 kcal/mol) xhb (3.11)

∆H(xhb) = 6.4 kcal/mol − (4.0 kcal/mol) xhb. (3.12)

The results are similar to the non-polarizable model, with the largest difference for the

purely hydrophobic cavity with no hydrogen bonds. The smaller ∆G is consistent other
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Figure 3.3: Values of ∆G, −T∆S, and ∆H for the model cavities as a function of the number
of hydrogen bonds formed using the non-polarizable potential model (blue diamonds)
and the polarizable model (red squares). The line shows a linear fit to the data for the
polarizable potential.

studies that found TIP4P-FQ water is more likely to enter a lipid bilayer than non-

polarizable water models [86]. The polarizable model has a lower ∆G by about 1.5 kcal/mol

for the hydrophobic cavity. This difference appears to be purely enthalpic. The entropy

changes between the polarizable and non-polarizable models are very close. The average

dipole moment of the water molecule increases as hydrogen bond partners are added. For

the purely hydrophobic cavity, the dipole moment is 1.88 Debye, close to the gas-phase

value (1.85 Debye) [73], and increases up to 2.47 Debye for the four hydrogen cavity.

(The dipole moment in the liquid is 2.62 Debye.) The differences between the polarizable

· 64 ·



Table 3.5: Hydration thermodynamics for hydrophobic cavities with different sizes,
calculated from the non-polarizable model.

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F0M 0.00 3.100 3.721(1) 8.68(3) -2.74(4) 11.42(3) 69.7(1) 0.216(5)

0F0M 0.00 3.400 3.829(1) 6.96(3) -2.27(4) 9.23(2) 83.2(1) 0.280(6)

0F0M 0.00 3.614 3.931(3) 6.08(3) -2.16(3) 8.25(2) 96.6(2) 0.36(1)

0F0M 0.00 4.100 4.247(4) 5.05(3) -2.76(4) 7.81(4) 142.9(6) 0.94(5)

0F0M 0.00 4.300 4.409(3) 4.86(3) -3.19(6) 8.04(5) 169.6(5) 1.46(8)

0F0M 0.00 4.500 4.581(4) 4.64(3) -3.55(5) 8.19(4) 199.9(7) 2.41(8)

Table 3.6: Hydration thermodynamics for hydrophobic cavities with different sizes,
calculated from the polarizable model.

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F0M 0.00 3.100 3.734(2) 5.71(8) -1.03(8) 6.74(3) 71.4(2) 0.158(3)

0F0M 0.00 3.400 3.844(1) 4.98(8) -1.51(8) 6.49(2) 85.4(1) 0.234(8)

0F0M 0.00 3.614 3.943(5) 4.57(8) -1.85(8) 6.42(2) 98.7(7) 0.319(8)

0F0M 0.00 4.100 4.261(5) 4.08(8) -2.76(8) 6.83(2) 146.0(9) 0.76(3)

0F0M 0.00 4.300 4.414(2) 4.02(8) -3.22(8) 7.23(3) 171.2(5) 1.14(6)

0F0M 0.00 4.500 4.586(3) 3.93(8) -3.65(9) 7.59(4) 201.9(7) 1.87(4)

and non-polarizable models should be most noticeable when the dipole moment is most

different from the bulk value, as it is for the hydrophobic cavities.

The thermodynamic properties as a function of cavity size are given in Tables 3.5-

3.8. Tables 3.5 and 3.6 give the results for various sized non-polar cavities, with results

from both the non-polarizable and polarizable potential.The results for cavities with four

potential hydrogen bonding partners are given in Tables 3.7 and 3.8. The size of the

cavities can be quantified in a number of ways. The average of the carbon positions, 〈r〉,

gives one measure of the cavity size. Cavity size can also be determined by the solvent

accessible volume. Another measure of the size of the cavity is the mean-square fluctu-
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Table 3.7: Hydration thermodynamics for hydrophilic cavities with different sizes,
calculated from the non-polarizable model.

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F4M 3.57(4) 3.346 3.897(4) 0.62(5) 5.8(1) -5.2(1) 58.1(6) 0.22(3)

0F4M 3.74(1) 3.413 3.921(2) -1.00(4) 6.0(1) -7.0(1) 61.5(4) 0.225(6)

0F4M 3.84(1) 3.480 3.944(2) -2.09(4) 6.0(1) -8.1(1) 64.8(3) 0.22(2)

0F4M 3.83(2) 3.547 3.969(4) -2.75(4) 6.0(1) -8.7(1) 68.4(6) 0.240(3)

0F4M 3.78(1) 3.614 3.998(2) -3.21(4) 5.51(8) -8.72(8) 72.8(3) 0.256(5)

0F4M 3.65(1) 3.682 4.026(3) -3.28(4) 5.15(8) -8.43(8) 77.1(3) 0.272(8)

0F4M 3.44(1) 3.749 4.063(2) -3.20(4) 4.64(8) -7.84(8) 82.8(3) 0.307(6)

0F4M 3.18(2) 3.817 4.096(4) -2.98(4) 4.18(7) -7.17(7) 88.2(6) 0.35(1)

0F4M 2.89(2) 3.885 4.135(3) -2.69(3) 3.63(8) -6.31(7) 94.5(4) 0.42(1)

0F4M 1.76(2) 4.158 4.315(3) -1.18(3) 1.51(5) -2.69(5) 124.8(5) 0.86(3)

0F4M 1.35(1) 4.337 4.453(3) -0.34(3) 0.41(5) -0.74(4) 149.2(5) 1.38(4)

Table 3.8: Hydration thermodynamics for hydrophilic cavity with different sizes,
calculated from polarizable model.

change in R 〈r〉 ∆Ghyd −T∆Shyd ∆Hhyd Volume 〈δr2
W 〉

hydrogen bonds Å Å (kcal/mol) (kcal/mol) (kcal/mol) (Å3) (Å2)

0F4M 3.74(3) 3.346 3.883(2) 0.4(1) 6.9(2) -6.6(2) 57.2(3) 0.19(1)

0F4M 3.85(1) 3.413 3.909(3) -1.00(9) 7.0(2) -8.0(2) 60.2(3) 0.184(6)

0F4M 3.91(1) 3.480 3.932(3) -1.96(9) 6.9(2) -8.9(1) 63.5(5) 0.195(5)

0F4M 3.90(1) 3.547 3.961(3) -2.48(8) 6.4(1) -8.9(1) 68.0(3) 0.219(7)

0F4M 3.82(1) 3.614 3.988(1) -2.66(8) 6.2(1) -8.81(9) 71.8(1) 0.226(8)

0F4M 3.70(3) 3.682 4.020(3) -2.69(8) 5.5(1) -8.15(8) 76.5(5) 0.245(8)

0F4M 3.28(2) 3.749 4.055(3) -2.50(8) 4.9(1) -7.4(1) 82.0(4) 0.289(7)

0F4M 3.18(3) 3.817 4.089(3) -2.21(8) 4.0(1) -6.26(9) 87.5(5) 0.325(7)

0F4M 2.83(1) 3.885 4.129(2) -1.91(8) 3.3(1) -5.24(7) 94.0(3) 0.391(6)

0F4M 1.67(1) 4.158 4.316(3) -0.42(8) 0.8(1) -1.26(5) 125.1(5) 0.84(2)

0F4M 1.28(2) 4.337 4.451(3) 0.35(8) -0.2(1) 0.55(4) 149.0(4) 1.272(8)
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ations of the position of the oxygen atom of the water molecule. These values are shown

in Tables 3.5-3.8. The dependence of ∆G, −T∆S, and ∆H on the cavity volume is shown

in Fig. 3.4 for the non-polarizable model and Fig. 3.5 for the polarizable model. The de-

pendence on volume for both a purely hydrophobic (all methane) cavity and a hydrophilic

(with four possible hydrogen bonding molecules) is shown. For both potential models,

the volume dependence is different for the hydrophobic (diamonds) and hydrophilic (filled

circles) cavities. The free energy for the hydrophobic cavities decreases with volume, while

the free energy for the hydrophilic cavities has a minimum around 75 Å3 and increases

at larger volumes. The entropies and enthalpies are much more strongly dependent on

volume for the hydrophilic cavities.

For the hydrophilic cavities, the change in the number of hydrogen bonds is de-

pendent on the volume (see Tables 3.7 and 3.8). For small volumes, adding a water

molecule breaks up cage-cage hydrogen bonds, so the gain in hydrogen bonds is less than

the number of hydrogen bonds the water makes with the cage. For example, a water in

the smallest cavity (with R=3.346 Å) makes 3.92 hydrogen bonds with the surrounding

methanol molecules, but the addition of the water disrupts the methanol-methanol hy-

drogen bonds so only 3.57 hydrogen bonds are gained. For the cavity with R=3.682 Å,

which has the most negative ∆G, only 3.65 water-methanol hydrogen bonds are made, so

this cavity is less optimal than the smaller cavity for making water-cage hydrogen bonds.

In this case, no methanol-methanol hydrogen bonds are disrupted by the water molecule,

so the net number of hydrogen bonds gained by the addition of the water molecule is 3.65,

slightly greater than that for the smaller cavity.

For larger volumes, the number of water-methanol hydrogen bonds continues to

decrease. The number of hydrogen bonds falls from 3.65 to 1.35 in the largest case (Tables

3.7). If the contributions to ∆G, −T∆S, and ∆H from the hydrogen bonds are given by the

linear fits of eq 3.9 or 3.12, then the effects of volume can be separated from the effects of

hydrogen bond number. For example, from the ∆G for the non-polarizable model a factor
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Figure 3.4: Values of ∆G, −T∆S, and ∆H as a function of cavity volume for the purely
hydrophobic cavities (blue diamonds), the hydrophilic cavities (red circles), and the hy-
drophilic cavities after subtraction of the hydrogen bond contribution (blue circles) for the
non-polarizable model. The dashed line in the middle figure shows the harmonic estimate
of the −T∆S for the hydrophobic cavities.

of 2.3 kcal/mol times the number of hydrogen bonds is subtracted. Once the hydrogen

bond contribution is eliminated, the results look more consistent between the hydrophilic

and hydrophobic cavities (the blue circles in Figures 3.4 and 3.5). This free energy

decreases as the volume increases, just like the hydrophobic cavities. The hydrogen-

bond-corrected entropies are identical for the hydrophilic and hydrophobic cavities and

do not have a strong volume dependence, which means that the strong volume dependence

of the entropy for water in hydrophilic cavities is almost completely due the changes in

hydrogen bonds.
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Figure 3.5: Values of ∆G, −T∆S, and ∆H as a function of cavity volume for the purely
hydrophobic cavities (blue diamonds), the hydrophilic cavities (red circles), and the hy-
drophilic cavities after subtraction of the hydrogen bond contribution (blue circles) for the
polarizable model. The dashed line in the middle figure shows the harmonic estimate of
the −T∆S for the hydrophobic cavities.

The changes in volume increase the entropy (decreases −T∆S) of the hydrophobic

cavities and the hydrophilic cavities (after the hydrogen bond contribution is subtracted)

but only by one to two kcal/mol as the volume is increased from about 60 Å3 to 200 Å3.

This weak dependence on volume can be understood with a harmonic model. The entropy

of a harmonic oscillator is

S = 3k[1 − ln(~ω/kT )] (3.13)
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where ~ is Planck’s constant divided by 2π. The frequency ω can be found from the

fluctuations in the position of the oxygen atom in the water molecule, 〈δr2
w〉 using

ω2 = 3kT/(m〈δr2
w〉) (3.14)

wherem is the mass of the water molecule. This harmonic estimate of the entropy is shown

in Fig. 3.4 and Fig. 3.5, using the 〈δr2
w〉 from Tables 3.5 and 3.6. To find −T∆S, a constant

(6.0 kcal/mol for the non-polarizable model and 6.2 for the polarizable model) has been

added to the entropy from Eq. 3.13. This was chosen to that the harmonic estimate of the

entropy agreed with entropies from the simulations in the large volume limit. Since the

harmonic entropy includes only the vibrational entropy of the water molecule in the cavity,

this constant includes the contributions to the entropy from everything else, including

contributions from the liquid phase entropy, the translational entropy of water in the

cages, and the changes in the entropy of the atoms making up the cavity. This analysis

captures the volume dependence of the entropy, especially for larger volumes.

3.5 Conclusion

Our model cavities models are representative of cavities inside proteins, or at

protein-ligand interfaces, that are large enough for a single water molecule. The ther-

modynamics of adding a water molecule to these model cavities agree with the results

from simulations of entire proteins, and allow us to examine a large variety of local envi-

ronments. The cavities are made to vary in two ways. The first is to vary the hydrophilicity

by adding an carbonyl or alcohol moiety to increase the number of hydrogen bonds the

water can make. These are chosen to represent neutral hydrogen bond forming atoms,

like those on the protein backbone or on alcohol containing side chains. The second is to

change the size of the cavity.

As the number of hydrogen bonds increases, ∆G decreases, with the enthalpic gain

outweighing the entropic loss (Figures 3.2 and 3.3 and Tables 3.2 and 3.3).The free energy
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decreases with the number of hydrogen bonds by about 2 kcal/mol, with the enthalpic

contribution decreasing by 4 kcal/mol and the entropy contribution, −T∆S, increasing by

2 kcal/mol (see eqs 3.7-3.12). This dependence of the entropy on the number of hydrogen

bonds is close to value found previously for water molecules at the protein/drug interface

of 1.7 kcal/mol per hydrogen bond [30]. Also close is the theoretical estimate using the

entropy of melting of ice which predicts −T∆S should increase by 1.6 kcal/mol for each

hydrogen bond [33]. In consideration of the effects of hydrogen bonds on the stability of

the water, it is important to consider not only the hydrogen bonds that are made by the

water molecule but the hydrogen bonds that are lost by the addition of the water. Water

in cavities in which the water molecule forms four hydrogen bonds can be less stable than

water those in cavities which form less hydrogen bonds, if the addition of those water

disrupts less hydrogen bonds than in the other cavity. A similar conclusion was reached

in our earlier study of water molecules at drug/protein interfaces [30].

The results of the calculations with different volumes for hydrophilic cavities show

that the main dependence on the free energy, entropy, and enthalpy are mainly from

changes in the hydrogen bonds that form. After the contributions from the hydrogen

bonds are taken into account, the remaining changes are small in magnitude and similar

to what is seen for the hydrophobic cavities. The small decrease in entropy as the volume

increases is consistent with entropy estimated from a simple harmonic model.
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Chapter 4

Bound Water and Protein Structure and Flexibility

4.1 Introduction

The intimate relationship between protein function and its structure and flexibility

has long been recognized [1, 2, 3]. Bound water molecules are frequently found in protein

crystal structures and sometimes conserved in proteins belonging to the same homologous

family [4, 5]. These water molecules are usually involved in the mediating of protein-

protein and protein-ligand interactions and may contribute to their structural stability and

conformational flexibility. In this study, we preformed Molecular Dynamics simulations

for proteins with bound water included in and excluded from the water-binding sites, and

the influences of the bound water molecules on the protein structure and flexibility are

investigated.

4.2 Methods

4.2.1 Simulated Systems and Structure Preparation

Four proteins were simulated in our study, the wild-type bovine pancreatic trypsin

inhibitor (BPTI, PDB entry 5PTI [6]), the wild-type hen egg white lysozyme (HEWL, PDB

entry 4LZT [7]), and two variants of the wild-type Staphylococcal nuclease (SNase), PHS

(PDB entry 1YE8 [8]) and PHS/V66E [9]. PHS is a hyperstable form of wild-type SNase with
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three mutations (P117G, H124L, and S128A); PHS/V66E is the mutant of PHS with Val-66

replaced by a glutamic acid. Two separate simulations were performed for each protein,

differing in the hydration states of protein cavities. In the first simulation, all bound water

molecules are retained in the structure preparation step, and no perturbation was added

during the course of simulation. In the other simulation, a repulsive potential applied to all

solvent molecules at each water-binding site was used to prevent the solvent from entering

into these regions. The repulsive potential was taken as the repulsive term of the Lennard-

Jones interaction. Four bound water molecules are well identified in the 5PTI structure

(WAT111, WAT112, WAT113 and WAT122) [6]. Among them, water WAT122 is contained in

an isolated cavity, while the remaining three are located in a channel-like cavity forming a

water cluster (red spheres in Figure 4.1(a)). In the 4LZT structure of HEWL [7], four water

molecules (WAT1001, WAT1004, WAT1007 and WAT1015) are observed to be buried in a

large cavity in the ‘‘hinge’’ region between two domains, and one water molecule (WAT1008)

is located in the loop region of the smaller domain (Figure 4.1(b)). Beside these five

completely buried water molecules, two other water molecules (WAT1003 and WAT1073)

are also found to be partially buried at the surface (green spheres in Figure 4.1(b)). The

structure of PHS has several bound water molecules, of which WAT202, WAT203, and

WAT211 are deeply buried water molecules and are inaccessible to the solvent (red spheres

in Figure 4.1(c)), while water WAT201, WAT214, WAT242 and WAT223 are partially buried

water molecules (green spheres in Figure 4.1(c)). All these water molecules are conserved

in the PHS/V66E and wild-type Snase (1STN [10]) structures except for WAT242, which

is only observed in the PHS structure. The V66E mutation creates a cavity in the protein

interior and introduces two more water molecules (WAT223 and WAT220 in Figure 4.1(d)).

These two water molecules are next to the Glu-66 side chain and form portion of a chain of

four water molecules reaching to the exterior of the protein. In the simulations of proteins

without bound water, both the completely buried and partially buried water molecules are
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repelled from the HEWL and PHS interiors, while only the deeply buried water molecules

are excluded from the BPTI and PHS/V66E protein interiors (Figure 4.1).

(a) (b)

(c) (d)

Figure 4.1: Crystal Structures of 4 proteins simulated in this study, the bound wa-
ter molecules are shown as spheres. The red spheres represent deeply buried water
molecules, and green ones are water molecules close to the surfaces. The solvent accessi-
ble surfaces(Connolly surface) for each protein is shown in light bllue. (a) BPTI, (b) HEWL,
(c) PHS, (d) PHS/V66E
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Since all simulations were carried out at physiological (neutral) pH, care was taken

while assigning the charged states of histidine residues. In PHS and PHS/V66E, each

protein contains three histidines: HIS-8, HIS-46, HIS-121. Their corresponding experi-

mental pKa values are 6.53±0.02, 5.90±0.02 and 5.31±0.02 in PHS [11]. Although we

found no experimental pKa data currently available for histidines in PHS/V66E, the pKa

values for them in the wild-type and a series of mutants of SNase are in the range of 5.3

to 6.5 [11, 12]. Therefore, it is reasonable to presume that the pKas for these three his-

tidines in PHS/V66E are also in this range. In our simulations, all histidines in both PHS

and PHS/V66E proteins were assumed to be uncharged and were assigned the following

protonation states: HID-8, HIE-46, HID-121, where HID is the Nδ tautomer and HIE is

the Nϸ tautomer. This choice is the same as that used in two other PHS/V66E simula-

tions [13, 14], but different from that used in a pKa calculation with continuum method

[11]. It should be noted that, Although the pKa values for all aspartic acids and glutamic

acids measured experimentally in a number of PHS mutants are in the range of 2.1–4.0

and 2.5–4.6 (with one exception, the pKa for ASP-21 is about 6.5), respectivelly [15], The

pKa of GLU-66 in PHS/V66E is estimated to be 8.8 [16]. In our simulations, all the ASP

and GLU residues were assumed to be in their deprotonationed states except GLU-66

in PHS/V66E, which was in the neutral state and the hydrogen was added on the OE2

atom. There is one histidine residue (HIS-15) in the HEWL protein. The pKa value for this

histidine is about 5.5 [17, 18]. This residue was assumed to be in the HID-15 protonation

state based on the analysis of hydrogen bonding pattern in 4LZT crystal structure. The

addition of the hydrogen on the Nδ atom can make this histidine accepts one proton from

the hydroxyl group in THR-89 and donates one proton to the carboxyl group in ALA-11.

All the simulated systems were prepared with the tleap and sander modules in

the Amber 9 suite of programs [19]. In the first step of structure preparation, residues

with alternative conformations were identified and only ‘‘A’’ conformation was retained. All

water molecules found in the PDB files were also retained except for BPTI, in which only
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the bound water molecules were retained. The well prepared protein structure was then

loaded into tleap to add hydrogen atoms and counter ions to neutralize the protein charge.

For PHS and PHS/V66E, only atomic coordinates from residue 7 to 141 are available in

the crystal structures. Acetyl (ACE) beginning groups and N-methylamine ending groups

were added to these two proteins to represent the terminal amino acids. After the addition

of ending groups, short energy minimizations of 200 steps were performed to remove bad

contacts. In the last step, the protein was immersed into a rectangular water box with a

minimum distance of 9 Å between the protein and the edge of the box. For the simulation

of protein devoid of bound water molecules, all identified water molecules were removed

after solvating protein into the water box. The details of the systems simulated in this

study are summarized in Table 4.1.

Table 4.1: Details of simulated systems

Protein Excluded Water residues Protonation state Cl− H2O Time (ns)

BPTI(W) 1–58 6 3628 31

BPTI(NW) 122,111,112,113 1–58 6 3624 13

HEWL(W) 1–129 HID-15 8 6135 20

HEWL(NW) 1001,1003,1004,1007, 1–129 HID-15 8 6128 17

1008,1015,1073

PHS(W) 7–141 HID-8,HIE-46,HID-121 9 5982 23

PHS(NW) 201,202,203,211, 7–141 HID-8,HIE-46,HID-121 9 5975 20

214,223,242

PHSV66E(W) 7–141 HID-8,HIE-46,HID-121, 9 5822 20

GLH-66

PHSV66E(NW) 207,220,223,233 7-141 HID-8,HIE-46,HID-121 9 5817 20

239 GLH-66

4.2.2 Molecular Dynamics Simulation

All protein Molecular Dynamics (MD) simulations were performed with Amber 9

suite of programs [19] in conjunction with the AMBER99SB force field [20] and TIP3P
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water [21]. Before any MD simulations, each solvated system was subjected to a 100

cycles of steepest-descent energy minimization followed by a 100 cycles of conjugate gra-

dient minimization. The solvated and minimized structure was then heated gradually in

the canonical ensemble (constant N, V, T) in steps of 50 K with 100 ps per step. After

reaching the simulation temperature of 298 K, the simulation was switched to a 200 ps

equilibration process under constant pressure of 1 bar and temperature of 298 K (NPT)

condition. Totally 800 ps MD simulation was conducted for each system in the heatup and

equilibration stages. Production runs were performed subsequently after the equilibration

and MD trajectory data were collected at an interval of 1 ps. In our simulation, a time

step of 2 fs was used and all bonds were constrained (except for heatup simulation, where

only bonds involving hydrogen atoms were constrained) with SHAKE algorithm [22]. The

temperature was regulated through the Langevin dynamics with a collision frequency of

2.0 ps−1 and pressure was maintained utilizing Berendsen weak coupling algorithm [23]

with isotropic position scaling and a relaxation time of 2.0 ps. Short-range nonbonded

interactions were cut off at 9.0 Å and long-range electrostatics were treated with particle

mesh Ewald method [24].

To simulate protein devoid of bound water, a repulsive potential of form u =

4ϸ
∑
o[σ/(|ro − rx | − req)]12 was applied to each binding site, where ro is the position of

a solvent water oxygen and rx is the position of water-binding site, the summation is over

all solvent molecules in the simulated system. The parameter ϸ is the repulsion strength

and req is the repulsion radius. The repulsive energy decreases rapidly with distance be-

yond the repulsion radius. An uniform value of ϸ was used for all the simulations, but

different values of req were chosen for different binding sites so that the water molecules

can be repelled without disturbing too much of the solvent structure. The values of req

are shown in Table 4.2. The protein may undergo rotation and translation during the

simulation process, the water-binding site must move along with the protein. This was

implemented by fitting the crystal structure onto the simulation structure in every MD
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step to minimize the root mean square deviation between Cα atoms. The position of the

water-binding site, rx , was taken to be the location of the oxygen atom of the crystal bound

water.

Table 4.2: Repulsion radii for water-binding sites

Protein Repulsion radius req (Å)

BPTI(NW) 111:2.6 112:3.2 123:3.2 122:3.2

PHS(NW) 201:2.6 202:4.0 203:4.0 211:3.6 214:2.6 223:2.6 242:2.6

HEWL(NW) 1001:4.0 1003:2.6 1004:4.0 1007:3.0 1008:3.2 1015:4.0 1073:2.0

PHSV66E(NW) 207:3.6 220:3.2 223:3.6 233:4.0 239:2.6

4.3 Results

4.3.1 Monitoring Bound Water Molecules

Although at least 20 ns MD simulation was performed for each protein (both with

and without bound water), not all the trajectories generated in the simulation of protein

without bound water were used for data analyses because of the water penetration. The

protein may undergo conformational changes due to the loss of bound water. Some

conformational changes can create new empty sites in the protein interior, the solvent

water molecules will penetrate into and occupy these new sites. Since in this study, we

want to investigate how the protein flexibility is influenced by the bound water molecules,

the trajectories with water molecules penetrated into the protein interior must be excluded

from our analyses.

To monitor if the water has been repelled successfully by the repulsive perturba-

tion. the minimum distances of solvent molecules to each binding sites are calculated.

These data are shown in Figures 4.2–4.5. In Figure 4.2, there is a sharp drop in the min-

imum distances for W122 site in BPTI at about 14 ns. A careful check on the simulation

structure indicates that this drop is caused by a water molecule penetrating into the pro-
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tein interior. Although repulsive potentials have been applied to each of the binding sites,

the conformational change of BPTI due to the void of bound water creates another empty

site between W122 and W113. A water molecule is trapped in this new site and remains

there during the rest of the simulation. The typical fluctuation of the minimum distance

is about 2 Å, while this fluctuation drops to 1 Å after 14 ns at both W122 and W113

sites in BPTI, both decreases are due to the presence of this water molecule (WAT427 in

Figure 4.6). Similar decreases in the minimum distances and their fluctuations at W112

and W111 sites are also seen in Figure 4.2. The examination of the simulation structure

finds no water penetration, but some relatively stable solvent molecules bind to the pro-

tein surface close to the entrance of the channel-like cavity (WAT3609 in Figure 4.6). Due

to the penetration of water, all following analyses for BPTI without bound water are based

on the first 13 ns simulation. In the simulation of HEWL, a water molecule is also found

to enter into the protein interior at the end of 18 ns, as indicated by the sharp decreases

in the minimum solvent distance and its fluctuation for W1001 site in Figure 4.3. For the

HEWL analysis, we will use on the first 17 ns simulation trajectory.

Although the minimum distances drop slowly for the W211 and W242 sites in PHS

simulation (see Figure 4.4), no water penetration is observed at these sites. These two

sites locate next to each other in the region close to the mobile Ω-loop of SNase, the

bound water molecules at these sites play important roles in bridging the loop and the

rest part of the protein. The loss of bound water at these sites breaks the connection and

exposes the binding sites to the solvent. For the analysis of PHS and PHS/V66E, the whole

trajectories generated in the simulations are used. The simulation times used for each

protein analysis in this study are listed in Table 4.1. It should be noted that, the minimum

distances for some binding sites are far beyond the repulsion radii, for example, W203 in

PHS and W223 in PHS/V66E, this is because these sites are deeply buried in the protein

interiors and the entries of solvent molecules are deterred by the steric interactions with

the protein atoms.
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Figure 4.2: Minimum solvent distance to each water-binding site in the simulation of
BPTI without bound water. The x-axis is the simulation time and y-axis is the minimum
distance (unit Å). The red line indicates the repulsion radius for each binding site.
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Figure 4.3: Minimum solvent distance to each water-binding site in the simulation of
HEWL without bound water. The x-axis is the simulation time and y-axis is the minimum
distance (unit Å. The red line indicates the repulsion radius for each binding site.
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Figure 4.6: The water molecules caused drops in minimum solvent distances and their
fluctuations in BPTI. The crystal and simulation structures of the protein are shown in
purple and blue, respectively. The water binding sites are shown as black crosses and
their repulsion radii are illustrated by purple spheres. The conformational change due
to the void of bound water molecules creates a new empty site in the protein interior,
a water molecule, W427, penetrates into this empty site at about 14 ns and is trapped
stably during the rest of simulation. Both decreases in the minimum distances and their
fluctuations for W122 and W113 sites are due to this water. Water WAT3609 bind to
the protein surface at the entrance of a channel-like cavity with relative stability and
contributes to the drops at W111 and W112 binding sites.
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4.3.2 Bond water and Protein Structural Change

To investigate how the bound water influence the protein structure, the root mean

square deviation (RMSD) could be evaluated. The RMSD of the protein with respect to

some reference structure at simulation time t is defined by

RMSD(t) =

√√
1
N

N∑
i

(
ri(t) − rrefi

)2
(4.1)

where N is the total number of atoms, ri(t) and rrefi are the Cartesian coordinates of atom

i in the simulation structure of time t and in the reference structure, respectively. For

comparison, both RMSDs for protein with and without bound water are determined by

using the crystal structure as the reference structure. The RMSDs for the 4 proteins as a

function of simulation time are illustrated in Figure 4.7

For BPTI with bound water, the RMSD values are between 0.75 and 2.46 Å, with the

maximum value is found at 13.355 ns. The RMSD exhibits a quasi-periodic behavior in

the first 15 ns, its value then decreases monotonically to about 1.25 Å and maintains low

structural changes after 25 ns. The average value of RMSD during the 31 ns simulation

is 1.43±0.09 Å (All error bars in this Chapter were calculated based on 1 ns window). For

BPTI without bound water, the RMSD is relatively stable during the 13 ns simulation, no

apparent decrease or increase is observed. The maximum RMSD is 2.62 Å and minimum

value is 1.18 Å, with a average RMSD of 1.74±0.06 Å. In the simulations of HEWL, both

proteins with and without bound water show very similar structure with respect to the

protein crystal. The RMSD values are very low and essentially do not change in the whole

simulation processes. The simulation of HEWL with bound water has a average RMSD

value of 0.84±0.03 Å, whereas the simulation without bound water has a slightly higher

average RMSD of 0.98±0.03 Å. For the simulations of PHS, The RMSD of protein with

bound water increase rapidly from ∼0.8 Å to ∼ 1.2 Å in the first nanosecond. the protein

structure then maintains fairly stable structure, no dramatic change in RMSD is seen
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Figure 4.7: RMSDs of Cα atoms relative to the crystal structures for 4 proteins as a
function of simulation time. The blue line is for the simulation of protein with bound
water while the red line is for the simulation without bound water.

in the rest of simulation. The average RMSD for PHS with bound water is 1.14 Å. The

simulation of PHS without bound water shows a different behavior. In the first 2 ns, the

protein RMSD increases gradually from below 1.0 Å to ∼1.2 Å, it then maintains this value

for about 6 ns. After 8 ns, the RMSD value increases quickly to ∼2.0 Å within 2 ns and

undergo larger fluctuations within 1.5–2.5 Å thereafter. The average RMSD value for PHS

without bound water is 1.15 Å in the first 8 ns and is 1.90 Å in the last 10 ns. The RMSD

for PHS/V66E with bound water increase rapidly from its initial value of 1.23 Å to 1.81 Å

within 1.5 ns. Its value decreases back to ∼1.0 Å before increasing again to ∼1.6 Å. The

protein structure is stable until 18 ns where a gradually decrease to ∼ 1.1 Å is observed.

The RMSD for PHS/V66E without bound water increases gradually from ∼1.0 Å to ∼2.0
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Å within the first 10 ns and then undergo quasi-periodic small fluctuations. The average

RMSDs for PHS/V66E with and without bound water are 1.42±0.06 Å and 1.8±0.2 Å,

respectively. The RMSD values averaged over the whole simulation time for the 4 proteins

with and without bound water molecules are reported in Figure 4.8. These indicate the

long-time scale fluctuations of the structures.

BPTI HEWL PHS PHSV66E0.0

0.5

1.0

1.5

2.0

C
A

 R
M

S
D

 (
◦ A
)

Bound Water

no Bound Water

Figure 4.8: RMSD values of proteins calculated based on Cα atoms

The apparent differences in RMSD values for the 4 proteins with and without bound

water, especially in the last stages of the PHS and PHS/V66E simulations, imply that

the proteins may undergo large structural changes due to the absence of bound water.

Furthermore, although no significant RMSD differences are found in the simulation of

HEWL, a small RMSD change is observed by averaging over the simulation time. In

addition, an invariance in overall protein RMSD does not necessarily mean that the protein

do not change its structure during the simulation processes. Small structural changes

may occur in local regions and their visibilities in RMSD are depressed by averaging over
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all protein atoms. It would be of interest to measure RMSD per residue to access which

residues suffer large structural changes. In our study, the RMSD value for each residue

is estimated based on the Cα atom using the equation

RMSD(i) =

√√
1
τ

τ∑
t

|ri(t) − rrefi | (4.2)

These RMSD values (with respect to crystal structure) are plotted in Figure 4.9.

For the simulation of BPTI, significant structural changes are observed in two

regions, which comprise residues 8–17 and 36–41. The overage RMSD for these two

regions is 0.77 Å for protein with bound water, while this value increases to 1.94 Å for

protein without bound water. In the protein crystal, these two regions have loop structures

and form the cavities that hold the bound water molecules. The bound water molecules

make several hydrogen bonds with the loop residues and bridges their interaction. Due

to the loss of bound water molecules, the loops experience large structural changes. It

should be noted that large RMSD values are seen for the C-terminal residues, ALA-58, in

both simulations of BPTI with and without bound water. ALA-58 is a small hydrophobic

residue with a methyl side chain. Crystal structure examination reveals that this residue

exposes isolatedly to the solvent environment, making no direct interactions with the other

part of the protein. The unfavorable interactions with the solvent molecules cause this

residue undergo large structural change.

For HEWL, both simulations show small overall RMSD values (below 1.0 Å). The

examination of RMSD value for each Cα reveals that a majority of residues (including

some terminal residues) have low RMSD values indicating that the proteins do not suffer

significant structural changes. However, three regions with relative large conformational

changes are still identified, as indicated by their large RMSD values. The three regions

are residues 45–49, 67–71, and 100-103. Furthermore, large RMSD fluctuations are also

observed in these regions (data not shown), reflecting that they consist of highly flexibly

residues. Comparing the simulations of proteins with and without bound water, structural
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changes are observed in residues 86–90. The average RMSD value of these 5 residues in

protein with bound water is 0.60 Å, while this value increases to 1.01 Å in protein without

bound water, revealing that these residues undergo small structural changes after losing

bound water molecules.

The simulations of PHS and PHS/V66E are less stable than HEWL, as demon-

strated by their larger protein RMSD values and fluctuations. The analysis of RMSD for

each Cα in PHS and PHS/V66E reveals that, except for the N-terminal residue, two regions

are also undergo significant structural changes. They are residues 40–51 and 78–86. The

average RMSD values for these residues are 1.96 Å and 2.05 Å in PHS and PHS/V66E

with bound water, respectively. Although no significant RMSD differences are found for

PHS/V66E with and without bound water, a large RMSD increase is observed in residues

46-50 for PHS without bound water compared with PHS with bound water. The rapidly

change in PHS simulation without bound water occur at 8 ns may attribute to these 5

residues. In addition, several small RMSD increases upon removing of bound water are

seen in both PHS and PHS/V66E simulations, indicating that these regions at least suffer

small structural changes, Maybe they are too rigid to be distorted significantly.

4.3.3 Bound Water and Protein Flexibility Change

To study how the protein changes its flexibility upon removing of bound water, we

calculated the mean square positional fluctuations (MSF) of atoms in the protein. The

MSF for atom i in the simulation is given by

MSF(i) =
1
τ

τ∑
t

(ri(t) − 〈ri〉)2 (4.3)

where τ is the simulation time, 〈ri〉 is the average position of atom i during the simulation

time τ. The protein’s MSF is evaluated by a mass-weighted averaging over all atoms

MSF =

∑N
i mi ×MSF(i)∑N

i mi

(4.4)
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wheremi is the mass of the ith atom. To eliminate the contributions from the translational

and rotational motions, the simulation structure has been superposed onto the crystal

structure before MSF calculation. The atomic MSF(i) can be converted to the crystallo-

graphic atomic B-factor, Bi, using the relation [25, 26, 27]:

MSF(i) =
3Bi
8π2 (4.5)

The MSF values for the 4 proteins calculated based on main chain Cα atoms are

ploted in Figure 4.11. All these 4 proteins, except PHS/V66E, become more flexible after

losing bound water. The MSF value for HEWL with bound water is 0.28±0.01 Å2, this

value increases to 0.34±0.02 Å2 after removing bound water molecules. Although PHS

with bound water is slightly more rigid than HEWL, with a MSF value of 0.23±0.02 Å2, its

flexibility increases up to 0.30±0.02 Å2 after losing bound water, comparable with that

of HEWL without bound water. Both protein have a flexibility change of about 0.65 Å2.

Comparing with HEWL and PHS, BPTI suffers less flexibility change, The MSF fluctuation

for BPTI protein with and without bound water are 0.27±0.01 Å2 and 0.31±0.02 Å2,

respectively. Only a flexibility change of 0.03±0.02 Å2 is observed. For PHS/V66E protein,

no apparent change is seen in its flexibility, even considering the MSF of all non-hydrogen

atoms (see Table 4.3).

The MSF fluctuation for each α carbon atoms are illustrated in Figure 4.11. In

BPTI protein, two regions are observed obviously to change their flexibilities after the loss

of bound water molecules. These regions include residues 8–12 and 39–42 which are

residues close to the bound water cluster of WAT111–WAT113. Although it seems that

residues 3–4 and 25-28 also change their flexibility, a definitive conclusion is prevented

by the large error bars. The WAT122 forms totally 4 hydrogen bonds with THR-11, CYS-14

and CYS-38, however, their flexibilities have almost no change. HEWL has several regions

in which flexibilities are changed: 3 segments, residues 39–42, 54–57 and 81–93, locate

nearby the 4 water cluster, while 1 region including 102–105 is far away from any bound
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Figure 4.10: MSF values of proteins calculated based on Cα atoms

water molecules. Although two water molecules are buried by residues 60–74, apparently

no flexibility changes are found for them. PHS is the protein observed to have largest

flexibility change among the 4 proteins studied. The significant flexibility change seems

is due to residues 42–49, which form the Ω loop and locate close to the two bound water

WAT211 and WAT242. The rest neighbors of these two water molecules, residues 18–21,

are also observed to have a small flexibility change. Besides these two regions, flexibility

change that is so large and can not be missed is also seen in residues THR-93 and ALA-94.

These 2 residues reside close the surface bound water WAT201. No apparent flexibility

change is observed in any residues of PHS/V66E.

4.4 Summary

To summarize, we have performed Molecular Dynamics simulations for four pro-

teins with bound water included in and excluded from the protein interiors. In our study,
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Table 4.3: Protein MSF values computed based on different components.

Protein MSF (Å2)

Cα atoms Backbone atoms non-hydrogen atoms

BPTI(W) 0.27±0.01 0.29±0.02 0.52±0.03

BPTI(NW) 0.31±0.02 0.33±0.02 0.55±0.04

HEWL(W) 0.28±0.01 0.30±0.01 0.44±0.02

HEWL(NW) 0.34±0.02 0.35±0.02 0.52±0.03

PHS(W) 0.23±0.02 0.25±0.02 0.44±0.03

PHS(NW) 0.30±0.02 0.32±0.02 0.56±0.03

PHSV66E(W) 0.32±0.02 0.34±0.02 0.58±0.03

PHSV66E(NW) 0.32±0.02 0.34±0.02 0.60±0.03

we focus on the protein structure and flexibility changes upon removing of bound water

molecules. All the four proteins simulated in our study, BPTI, HEWL, PHS and PHS/V66E,

change their structures after losing of bound water. The structure change does not hap-

pen only in the local regions close to the bound water, residues far away from the water

binding site also suffer small structure changes. Three of the four proteins are observed

to have increased flexiblities after the bound water is removed, while no obvious flexibility

change is found in PHS/V66E protein. Our finding is in agreement with the Mao et al.

conclusion [28], but different form the studies of Fischer, Verma and co-works [29, 30, 31]

and Olano and Rick [32]. A detailed analysis on pattern changes of hydrogen bonds may

be required for understanding the complex influences of water on protein flexibility.
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Chapter 5

Appendix

5.1 Supplementary Information for Chapter 3

Table 5.1: Non-local corrections for hydration free energies of cavities with different
hydrogen bond forming molecules.

Non-polarizable model Polarizable model

R(Å) ∆GKO(kcal/mol) ∆GLJ (kcal/mol) ∆GKO(kcal/mol) ∆GLJ (kcal/mol)

0F0M 3.614 -0.1615(3) -0.4332(7) -0.1199(3) -0.431(2)

1F0M 3.614 -0.1617(3) -0.4337(9) - -

0F1M 3.614 -0.1603(4) -0.430(2) -0.1418(4) -0.4280(6)

2F0M 3.614 -0.1612(3) -0.4323(9) - -

1F1M 3.614 -0.1603(5) -0.430(2) - -

0F2M 3.614 -0.1591(3) -0.4269(9) -0.1658(3) -0.4254(4)

2F1M 3.614 -0.1609(3) -0.4315(9) - -

1F2M 3.614 -0.1591(2) -0.4269(6) - -

0F3M 3.614 -0.1573(2) -0.4220(6) -0.1771(4) 0.4228(4)

2F2M 3.614 -0.1595(2) -0.4278(4) - -

1F3M 3.614 -0.1577(2) -0.4231(6) - -

0F4M 3.614 -0.1561(2) -0.4188(4) -0.2020(2) 0.4209(2)
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Table 5.2: Non-local corrections for hydration free energies of hydrophobic cavities with
different sizes.

Non-polarizable model Polarizable model

R(Å) ∆GKO(kcal/mol) ∆GLJ (kcal/mol) ∆GKO(kcal/mol) ∆GLJ (kcal/mol)

0F0M 3.100 -0.1804(1) -0.4827(3) -0.1351(2) -0.4794(5)

0F0M 3.400 -0.1704(1) -0.4564(2) -0.1268(1) -0.4529(2)

0F0M 3.614 -0.1615(3) -0.4332(7) -0.1199(3) -0.431(2)

0F0M 4.100 -0.1378(3) -0.3705(7) -0.1013(3) -0.3680(9)

0F0M 4.300 -0.1217(2) -0.3430(5) -0.0938(1) -0.3422(3)

0F0M 4.500 -0.1175(2) -0.3166(6) -0.0864(2) -0.3158(4)
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Table 5.3: Non-local corrections for hydration free energies of hydrophilic cavities with
different sizes.

Non-polarizable model Polarizable model

R(Å) ∆GKO(kcal/mol) ∆GLJ (kcal/mol) ∆GKO(kcal/mol) ∆GLJ (kcal/mol)

0F4M 3.346 -0.1644(3) -0.4408(9) -0.251(1) -0.4439(5)

0F4M 3.413 -0.1624(2) -0.4354(4) -0.238(1) -0.4381(7)

0F4M 3.480 -0.1605(2) -0.4304(4) -0.226(2) -0.4330(7)

0F4M 3.547 -0.1584(3) -0.4250(9) -0.216(2) -0.4267(6)

0F4M 3.614 -0.1561(2) -0.4188(4) -0.2020(2) -0.4209(2)

0F4M 3.682 -0.1539(2) -0.4130(6) -0.191(2) -0.4142(6)

0F4M 3.749 -0.1510(2) -0.4055(4) -0.1797(7) -0.4071(6)

0F4M 3.817 -0.1485(3) -0.3989(8) -0.1697(6) -0.4003(6)

0F4M 3.885 -0.1457(2) -0.3913(6) -0.1602(2) -0.3925(4)

0F4M 4.158 -0.1333(2) -0.3586(5) -0.1307(2) -0.3584(5)

0F4M 4.337 -0.1248(2) -0.3359(5) -0.1171(2) -0.3363(5)
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Table 5.4: Hydrogen bonding information for cavities with different hydrogen bond forming
molecules. Calculation is done with non-polarizable potential.a

R changes in changes in λ = 1.0 λ = 0.0

(Å) hydrogen bonds hb3 hb1 hb2 hb3 hb3

0F0M 3.614 0.00(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)

1F0M 3.614 0.91(1) 0.0000(0) 0.0000(0) 0.906(5) 0.0000(0) 0.0000(0)

0F1M 3.614 0.89(1) 0.0000(0) 0.066(6) 0.82(2) 0.0000(0) 0.0000(0)

2F0M 3.614 1.86(2) 0.0000(0) 0.0000(0) 1.86(2) 0.0000(0) 0.0000(0)

1F1M 3.614 1.84(4) -0.010(2) 0.37(3) 1.48(4) 0.0000(0) 0.010(2)

0F2M 3.614 1.84(3) -0.0008(4) 0.51(2) 1.33(3) 0.0000(0) 0.0008(4)

2F1M 3.614 2.91(1) 0.0000(0) 0.977(6) 1.93(2) 0.0000(0) 0.0000(0)

1F2M 3.614 2.88(1) -0.014(3) 0.999(7) 1.89(1) 0.0002(4) 0.014(3)

0F3M 3.614 2.79(2) -0.0016(8) 0.998(7) 1.79(2) 0.0000(0) 0.0016(8)

2F2M 3.614 3.88(3) -0.010(2) 1.92(3) 1.964(8) 0.0000(0) 0.010(2)

1F3M 3.614 3.84(1) -0.028(2) 1.89(1) 1.971(4) 0.0000(0) 0.028(2)

0F4M 3.614 3.78(1) -0.0044(5) 1.838(5) 1.943(3) 0.0000(0) 0.0044(5)
a hb1 is the number of hydrogen bonds where the water molecule acts as a proton acceptor, hb2 is for that with water as a proton donor,

and hb3 are hydrogen bonds formed between residue molecules.

Table 5.5: Hydrogen bonding information for cavities with different hydrogen bond forming
molecules. Calculation is done with polarizable potential.

R changes in changes in λ = 1.0 λ = 0.0

(Å) hydrogen bonds hb3 hb1 hb2 hb3 hb3

0F0M 3.614 0.00(0) 0.0000(0) 0.00(0) 0.00(0) 0.00(0) 0.0000(0)

0F1M 3.614 0.86(2) 0.0000(0) 0.10(2) 0.76(2) 0.00(0) 0.0000(0)

0F2M 3.614 1.83(3) -0.0004(5) 0.80(2) 1.04(2) 0.00(0) 0.0004(5)

0F3M 3.614 2.73(2) 0.0000(0) 1.12(2) 1.61(1) 0.00(0) 0.0000(0)

0F4M 3.614 3.82(1) -0.0028(7) 1.885(7) 1.940(6) 0.00(0) 0.0028(7)
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Table 5.6: Hydrogen bonding information for hydrophilic cavities with different sizes. Calcu-
lation is done with non-polarizable potential.

R changes in changes in λ = 1.0 λ = 0.0

(Å) hydrogen bonds hb3 hb1 hb2 hb3 hb3

0F4M 3.346 3.57(4) -0.34(3) 1.94(3) 1.980(3) 0.02(2) 0.36(3)

0F4M 3.413 3.74(1) -0.176(7) 1.939(8) 1.975(3) 0.004(2) 0.180(6)

0F4M 3.480 3.84(1) -0.065(6) 1.93(1) 1.974(2) 0.002(1) 0.067(6)

0F4M 3.547 3.83(2) -0.021(3) 1.89(2) 1.963(4) 0.0006(5) 0.022(3)

0F4M 3.614 3.78(1) -0.0044(5) 1.838(5) 1.943(3) 0.0000(0) 0.0044(5)

0F4M 3.682 3.65(1) -0.0022(4) 1.75(1) 1.904(7) 0.0000(0) 0.0022(4)

0F4M 3.749 3.44(1) -0.0002(4) 1.60(1) 1.841(5) 0.0000(0) 0.0002(4)

0F4M 3.817 3.18(2) 0.0000(0) 1.42(2) 1.758(7) 0.0000(0) 0.0000(0)

0F4M 3.885 2.89(2) 0.0000(0) 1.26(2) 1.634(9) 0.0000(0) 0.0000(0)

0F4M 4.158 1.76(2) 0.0000(0) 0.73(2) 1.03(2) 0.0000(0) 0.0000(0)

0F4M 4.337 1.35(1) 0.0000(0) 0.54(1) 0.81(1) 0.0000(0) 0.0000(0)
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Table 5.7: Hydrogen bonding information for hydrophilic cavities with different sizes. Calcu-
lation is done with polarizable potential.

R changes in changes in λ = 1.0 λ = 0.0

(Å) hydrogen bonds hb3 hb1 hb2 hb3 hb3

0F4M 3.346 3.74(3) -0.23(4) 1.984(5) 1.988(3) 0.002(2) 0.23(4)

0F4M 3.413 3.85(1) -0.11(2) 1.972(4) 1.987(1) 0.0004(5) 0.11(2)

0F4M 3.480 3.91(1) -0.032(6) 1.96(1) 1.980(3) 0.0000(0) 0.032(6)

0F4M 3.547 3.90(1) -0.008(2) 1.94(2) 1.966(4) 0.0002(4) 0.008(2)

0F4M 3.614 3.82(1) -0.0028(0) 1.885(7) 1.940(6) 0.0000(0) 0.0028(7)

0F4M 3.682 3.70(3) -0.0008(4) 1.81(3) 1.89(2) 0.0000(0) 0.0008(4)

0F4M 3.749 3.28(2) 0.0000(0) 1.68(3) 1.80(2) 0.0000(0) 0.0000(0)

0F4M 3.817 3.18(3) 0.0000(0) 1.51(3) 1.67(2) 0.0000(0) 0.0000(0)

0F4M 3.885 2.83(1) 0.0000(0) 1.315(7) 1.515(6) 0.0000(0) 0.0000(0)

0F4M 4.158 1.67(1) 0.0000(0) 0.74(2) 0.923(8) 0.0000(0) 0.0000(0)

0F4M 4.337 1.28(2) 0.0000(0) 0.57(2) 0.71(2) 0.0000(0) 0.0000(0)
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Table 5.8: Occurrence probabilities and the force filed parameters for 27 types of
atoms, the unit for σ is Å and for ϸ is kcal/mol.

atom type i wi (%) σi ϸi atom type i wi (%) σi ϸi

HS 0.1190 1.0740 0.0157 HP 0.7392 1.9690 0.0157

HO 0.9961 0.0000 0.0000 HC 25.5842 2.6617 0.0157

HA 2.3742 2.6116 0.0150 O2 1.4534 2.9735 0.2100

C* 0.0877 3.4153 0.0860 NA 0.3759 3.2650 0.1700

CB 0.0877 3.4153 0.0860 C 7.7304 3.4153 0.0860

CN 0.0877 3.4153 0.0860 CC 0.1441 3.4153 0.0860

H 10.0984 1.0740 0.0157 CA 3.1385 3.4153 0.0860

O 6.8032 2.9735 0.2100 N 6.8032 3.2650 0.1700

S 0.1378 3.5800 0.2500 CR 0.1441 3.4153 0.0860

N2 0.9585 3.2650 0.1700 N3 0.3696 3.2650 0.1700

CW 0.2318 3.4153 0.0860 CT 19.8897 3.4153 0.1094

OH 0.9961 3.0806 0.2104 H1 10.1547 2.4827 0.0157

H4 0.2318 2.5221 0.0150 H5 0.1441 2.4326 0.0150

SH 0.1190 3.5800 0.2500
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