6,804 research outputs found

    Why Study Noise due to Two Level Systems: A Suggestion for Experimentalists

    Full text link
    Noise is often considered to be a nuisance. Here we argue that it can be a useful probe of fluctuating two level systems in glasses. It can be used to: (1) shed light on whether the fluctuations are correlated or independent events; (2) determine if there is a low temperature glass or phase transition among interacting two level systems, and if the hierarchical or droplet model can be used to describe the glassy phase; and (3) find the lower bound of the two level system relaxation rate without going to ultralow temperatures. Finally we point out that understanding noise due to two level systems is important for technological applications such as quantum qubits that use Josephson junctions.Comment: 15 pages, 4 figures, Latex, to be published in J. Low Temp. Phys. issue in honor of S. Hunklinge

    Noise spectra of stochastic pulse sequences: application to large scale magnetization flips in the finite size 2D Ising model

    Full text link
    We provide a general scheme to predict and derive the contribution to the noise spectrum of a stochastic sequence of pulses from the distribution of pulse parameters. An example is the magnetization noise spectra of a 2D Ising system near its phase transition. At T≤TcT\le T_c, the low frequency spectra is dominated by magnetization flips of nearly the entire system. We find that both the predicted and the analytically derived spectra fit those produced from simulations. Subtracting this contribution leaves the high frequency spectra which follow a power law set by the critical exponents.Comment: 4 pages, 5 figures. We improved text and included a predicted noise curve in Figure 4. 2 examples from Figure 3 are remove

    Hydrogen as a Source of Flux Noise in SQUIDs

    Full text link
    Superconducting qubits are hampered by flux noise produced by surface spins from a variety of microscopic sources. Recent experiments indicated that hydrogen (H) atoms may be one of those sources. Using density functional theory calculations, we report that H atoms either embedded in, or adsorbed on, an a-Al2O3(0001) surface have sizeable spin moments ranging from 0.81 to 0.87 uB with energy barriers for spin reorientation as low as ~10 mK. Furthermore, H adatoms on the surface attract gas molecules such as O2, producing new spin sources. We propose coating the surface with graphene to eliminate H-induced surface spins and to protect the surface from other adsorbates.Comment: 12 pages, 4 figure

    Hierarchical Lattice Models of Hydrogen Bond Networks in Water

    Full text link
    We develop a graph-based model of the hydrogen bond network in water, with a view towards quantitatively modeling the molecular-level correlational structure of the network. The networks are formed are studied by the constructing the model on two infinite-dimensional lattices. Our models are built \emph{bottom up}, based on microscopic information coming from atomistic simulations, and we show that the predictions of the model are consistent with known results from ab-initio simulations of liquid water. We show that simple entropic models can predict the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic simulations. We also find that orientational correlations between bonds are longer ranged than density correlations, and determine the directional correlations within closed loops and show that the patterns of water wires within these structures are also consistent with previous atomistic simulations. Our models show the existence of density and compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with the singularity-free scenario previously proposed by Sastry and co-workers (Sastry et al, PRE 53, 6144 (1996)).Comment: 17 pages, published versio

    Why phonon scattering in glasses is universally small at low temperatures

    Full text link
    We present a novel view of the standard model of tunneling two level systems (TLS) to explain the puzzling universal value of a quantity, C∼3×10−4C\sim 3\times 10^{-4}, that characterizes phonon scattering in glasses below 1 K as reflected in thermal conductivity, ultrasonic attenuation, internal friction, and the change in sound velocity. Physical considerations lead to a broad distribution of phonon-TLS couplings that (1) exponentially renormalize tunneling matrix elements, and (2) reduce the TLS density of states through TLS-TLS interactions. We find good agreement between theory and experiment for a variety of individual glasses.Comment: Resubmission: several typos were corrected and the notation clarified in some places. No major change
    • …
    corecore