266 research outputs found

    Periodic input response of a second-order digital filter with two’s complement arithmetic

    Get PDF
    The dynamic behaviors of a nonlinear second-order digital filter with two’s complement arithmetic under periodic inputs are explored. The conditions for avoiding overflow are derived. Various dynamic periodic responses are analyzed, accompanied by numerous simulation examples

    Combining Electrochemical Nitrate Reduction and Anammox for Treatment of Nitrate-Rich Wastewater: A Short Review

    Get PDF
    Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities, and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater

    Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli

    Get PDF
    One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration

    Neuroglobin-overexpression reduces traumatic brain lesion size in mice

    Get PDF
    Background: Accumulating evidence has demonstrated that over-expression of Neuroglobin (Ngb) is neuroprotective against hypoxic/ischemic brain injuries. In this study we tested the neuroprotective effects of Ngb over-expression against traumatic brain injury (TBI) in mice. Results: Both Ngb over-expression transgenic (Ngb-Tg) and wild-type (WT) control mice were subjected to TBI induced by a controlled cortical impact (CCI) device. TBI significantly increased Ngb expression in the brains of both WT and Ngb-Tg mice, but Ngb-Tg mice had significantly higher Ngb protein levels at the pre-injury baseline and post-TBI. Production of oxidative tissue damage biomarker 3NT in the brain was significantly reduced in Ngb-Tg mice compared to WT controls at 6 hours after TBI. The traumatic brain lesion volume was significantly reduced in Ngb Tg mice compared to WT mice at 3 weeks after TBI; however, there were no significant differences in the recovery of sensorimotor and spatial memory functional deficits between Ngb-Tg and WT control mice for up to 3 weeks after TBI. Conclusion: Ngb over-expression reduced traumatic lesion volume, which might partially be achieved by decreasing oxidative stress

    Taxable and Tax-Free Equivalence of Interest Rate Yields: A Brief Note

    Get PDF
    This paper demonstrates the appropriate way in which to translate a tax-free interest rate yield into an equivalent taxable interest yield when there is not only a federal income tax to account for but also a state income tax as well. The results shown indicate the importance of allowing for state income tax rates when computing interest rate yield equivalence

    SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1

    Get PDF
    BACKGROUND: Grb2 (Growth factor receptor-bound protein 2) is a key adaptor protein in maintaining the ERK activity via linking Sos1 (Son of sevenless homolog 1) or other proteins to activated RTKs, such as EGFR. Currently, little knowledge is available concerning the post-translational modification (PTM) of Grb2 except for its phosphorylation. Since emerging evidences have highlighted the importance of SUMOylation (Small ubiquitin-related modifier), a reversible PTM, in modulating protein functions, we wondered if Grb2 could be SUMOylated and thereby influences its functions especially involved in the Ras/MEK/ERK pathway. METHODS: SUMOylation of Grb2 was analyzed with the in vivo SUMOylation assay using the Ni(2+)-NTA affinity pulldown and the in vitro E.coli-based SUMOylation assay. To test the ERK activity and cell transformation, the murine fibroblast cell line NIH/3T3 and the murine colon cancer cell line CMT-93 were used for the experiments including Grb2 knockdown, ectopic re-expression, cell transformation and migration. Immunoprecipitation (IP) was employed for seeking proteins that interact with SUMO modified Grb2. Xenograft tumor model in mice was conducted to verify that Grb2 SUMOylation regulated tumorigenesis in vivo. RESULTS: Grb2 can be SUMOylated by SUMO1 at lysine 56 (K(56)), which is located in the linker region between the N-terminal SH3 domain and the SH2 domain. Knockdown of Grb2 reduced the ERK activity and suppressed cell motility and tumorigenesis in vitro and in vivo, which were all rescued by stable ectopic re-expression of wild-type Grb2 but not the mutant Grb2(K56R). Furthermore, Grb2 SUMOylation at K(56) increased the formation of Grb2-Sos1 complex, which sequentially leads to the activation of Ras/MEK/MAPK pathway. CONCLUSIONS: Our results provide evidences that Grb2 is SUMOylated in vivo and this modification enhances ERK activities via increasing the formation of Grb2-Sos1 complex, and may consequently promote cell motility, transformation and tumorigenesis
    corecore