64 research outputs found

    Quantification of Cu and Zn in antifouling paint films by XRF

    Get PDF
    Methods to determine the release of biocides (e.g. copper) and substances of concern (e.g. zinc) from antifouling paints are required for both the development of efficient products and their environmental risk assessment. To date, there are only two standardized methods available to estimate such release rates, but their reliability has been put into question. An alternative method, allowing determination of environmental release rates in the field of metallic or organometallic biocides by X-Ray Fluorescence (XRF), has been developed and applied in recent years. In this study, the potential for standardization of the XRF method is investigated through evaluation of its accuracy, precision and transferability between instruments. Accurate quantification of copper (Cu) and zinc (Zn) in μg cm−2, despite differences in chemical composition, was demonstrated through comparison of calibration regression slopes for ten different antifouling paints and confirmed through the measurement of validation samples. Universal antifouling paint calibration curves are proposed for the determination of Cu and Zn in thin paint films, with a prediction uncertainty of around \ub1130 μg/cm2 for both metals. The transferability of the method to another instrument was also demonstrated. For both analyzers, concentrations of validation samples were within 5% of those determined through wet chemical analysis. Pre-requisites and recommendations for the application of the method as well as its applicability to both short- and long-term release rate studies in the field are also presented and discussed

    Valuating environmental impacts from ship emissions – The marine perspective

    Get PDF
    Shipping is an activity responsible for a range of different pressures affecting the marine environment, air quality and human welfare. The methodology on how ship emissions impact air quality and human health are comparatively well established and used in cost-benefit analysis of policy proposals. However, the knowledge base is not the same for impacts on the marine environment and a coherent environmental and socio-economic impact assessment of shipping has not yet been made. This risk policies to be biased towards air pollution whilst trading off impacts on the marine environment. The aim of the current study was to develop a comprehensive framework on how different pressures from shipping degrade marine ecosystems, air quality and human welfare. A secondary aim was to quantify the societal damage costs of shipping due to the degradation of human welfare in a Baltic Sea case study. By adding knowledge from marine ecotoxicology and life-cycle analysis to the existing knowledge from climate, air pollution and environmental economics we were able to establish a more comprehensive conceptual framework that allows for valuation of environmental impacts from shipping, but it still omits economic values for biological pollution, littering and underwater noise. The results for the Baltic Sea case showed the total annual damage costs of Baltic Sea shipping to be 2.9 billion €2010 (95% CI 2.0–3.9 billion €2010). The damage costs due to impacts on marine eutrophication (768 million €2010) and marine ecotoxicity (582 million €2010) were in the same range as the total damage costs associated with reduced air quality (816 million €2010) and climate change (737 million €2010). The framework and the results from the current study can be used in future socio-economic assessments of ship emissions to prioritize cost efficient measures. The framework can be used globally but the damage costs presented on the marine environment are restricted to emissions on the Baltic Sea and Kattegat region as they are based on willingness to pay studies conducted on citizens around the Baltic Sea where eutrophication and emissions of chemicals are particularly threats to the state of the Baltic Sea

    Arsenic in sediment - an environmental quality standard overview

    Get PDF
    The overall aim of the proposed report was to develop an Environmental Quality Standard overview for arsenic in marine and freshwater sediments, including to propose threshold values of arsenic in these two compartments. In addition, the proposed threshold values were compared to measured arsenic concentrations from Swedish monitoring data in freshwater and marine sediments

    Zinc in sediment - an environmental quality standard overview

    Get PDF
    The overall aim of the proposed report was to develop an Environmental Quality Standard overview for zinc in marine and freshwater sediments, including to propose threshold values of zinc in these two compartments. In addition, the proposed threshold values were compared to measured zinc concentrations from monitoring data in freshwater and marine sediments

    Best practise for cleaning of ship hulls

    Get PDF
    This report summarizes the methods available for cleaning based on a review of commercial equipment and the information is divided into handling and operation, efficacy in removal and capture and impact on paint

    Copper as a HELCOM core indicator

    Get PDF
    Part 1: Sources, environmental concentrations and state assessments in the Baltic SeaPart 2: EQS derivation for copper in sedimen

    Comparing emissions of polyaromatic hydrocarbons and metals from marine fuels and scrubbers

    Get PDF
    In January 2020, new global regulations were implemented to limit the maximum sulphur content in marine fuels. As an alternative to switch to compliant fuels, the regulations allow for installations of exhaust gas cleaning systems, e.g. scrubbers, that enables a continued use of less expensive heavy fuel oils (HFOs). Characterization of scrubber discharge water shows that the acidified water also becomes enriched with contaminants, and large quantities of metals and polyaromatic hydrocarbons (PAHs) are thus being discharged directly to the marine environment. When emissions of contaminants to the atmosphere and the marine environment are evaluated simultaneously, the results show that HFO, with scrubbers installed, generates higher emission factors of both metals and PAHs compared to MGO. This highlights the importance of including both the marine and the atmospheric perspective when comparing environmental loads and impact of contaminants from shipping

    Antifouling paints leach copper in excess – study of metal release rates and efficacy along a salinity gradient

    Get PDF
    Antifouling paints are biocidal products applied to ship and boat hulls in order to prevent the growth and settlement of marine organisms, i.e. fouling. The release of biocides from the surface of the paint film act to repel or poison potential settling organisms. Currently, the most commonly used biocide in antifouling paints is cuprous oxide. In the EU, antifouling products are regulated under the Biocidal Products Regulation (BPR), which states that the recommended dose should be the minimum necessary to achieve the desired effect. For antifouling products, the dose is measured as the release rate of biocide(s) from coating. In this study, the release rates of copper and zinc from eight different coatings for leisure boats were determined through static exposure of coated panels in four different harbors located in Swedish waters along a salinity gradient ranging from 0 to 27 PSU. The results showed the release rate of copper to increase with increasing salinity. Paints with a higher content of cuprous oxide were also found to release larger amounts of copper. The coatings’ ability to prevent biofouling was also evaluated and no significant difference in efficacy between the eight tested products was observed at the brackish and marine sites. Hence, the products with high release rates of copper were equally efficient as those with 4 – 6 times lower releases. These findings suggest that current antifouling paints on the market are leaching copper in excess of the effective dose in brackish and marine waters. Additionally, the results from the freshwater site showed no benefit in applying a copper-containing paint for the purpose of fouling prevention. This indicates that the use of biocidal paints in freshwater bodies potentially results in an unnecessary release of copper. By reducing the release rates of copper from antifouling paints in marine waters and restricting the use of biocidal paints in freshwater, the load of copper to the environment could be substantially reduced

    Environmental risk assessment of using antifouling paints on pleasure crafts in European Union waters

    Get PDF
    The Authors To ensure sustainable use of antifouling paints, the European Union have developed a new environmental risk assessment tool, which a product must pass prior to its placement on the market. In this new tool, environmental concentrations are predicted based on estimated release rates of biocides to the aquatic environment and risk characterization ratios are calculated in regional spreadsheets. There are currently two methods in use to predict release rates of biocides; a calculation method and a laboratory method. These methods have been believed to overestimate environmental release of biocides and therefore fixed correction factors to reduce the release rate can be applied. An alternative method, known as the XRF method, has recently been developed and used to derive field release rates from antifouling paints. The aim of this study was to review the new environmental risk assessment tool and assess how the choice of release rate method and application of correction factors impact the approval of antifouling paint products. Eight coatings were environmentally risk assessed for usage in four European marine regions; Baltic, Baltic Transition, Atlantic and Mediterranean; by applying release rates of copper and zinc determined with the different methods. The results showed none of the coatings to pass the environmental risk assessment in the Baltic, Baltic Transition and the Mediterranean if field release rates were used. In contrast, most of the coatings passed if the correction factors were applied on the release rates obtained with the calculation or laboratory method. The results demonstrate the importance of release rate method choice on the outcome of antifouling product approval in EU. To reduce the impact of antifouling paints on the marine environment it is recommended that no correction factors should be allowed in the environmental risk assessment or preferably that site-specific field release rates are used. If the regulation in the European Union (and elsewhere) continues to allow correction factors, the pressure of biocides to the environment from leisure boating will result in degradation of marine ecosystems
    • …
    corecore