40 research outputs found

    Determination of trace metals, moisture, pH and assessment of potential toxicity of selected smokeless tobacco products

    No full text
    The characterization and classification of smokeless tobacco products has been a continuously evolving process. This is based on a number of different parameters like nicotine content, moisture content, amount of heavy metals, pH, and in vitro cytotoxicity assays. Their contexts often vary between countries, research institutions, and legal requirements. The categorisation of these products is quite challenging due to the diffused sample sizes, diverse array of branded products on offer, and the absence of a centralized manufacturing facility. This study aims at a systematic classification of 10 smokeless tobacco product samples from the retail market based on their potential toxicity upon long-term use. The estimation of potential toxicity follows a well-established method that employs the concentration of toxic metals in the different samples. The potential toxicity as well as heavy metal concentrations of the smokeless tobacco products analysed was found to be much higher than acceptable limits. For instance, the levels of lead, cadmium, copper and zinc of 2.5, 1, 4 and 23 ppm, respectively, are well above their recommended limits. The results from the study indicate that chronic use of smokeless tobacco products is a significant health risk, especially in the vulnerable population. Further studies of this nature will help establish a toxicological fingerprint on the diverse class of products that floods the market now

    Acute dietary nitrate supplementation and exercise performance in COPD: a double-blind, placebo-controlled, randomised controlled pilot study

    No full text
    Background: Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD.Methods: We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage.Results: 21 subjects successfully completed the study (age 68±7years; BMI 25.2±5.5kg/m2; FEV1 percentage predicted 50.1±21.6%; peak VO2 18.0±5.9ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7±8mmHg nitrate vs. -1±8mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90–10.40) minutes vs. placebo 6.40 (4.01–9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6±6.0ml/min/kg nitrate vs. 17.2±6.0ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve.Conclusions: Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype.Trial Registration: ISRCTN Registry ISRCTN6609913
    corecore