3 research outputs found

    Joint Design and Pricing of Intermodal Port - Hinterland Network Services: Considering Economies of Scale and Service Time Constraints

    Get PDF
    Maritime container terminal operating companies have extended their role from node operators to that of multimodal transport network operators. They have extended the gates of their seaport terminals to the gates of inland terminals in their network by means of frequent services of high capacity transport modes such as river vessels (barges) and trains.

    The Design, Planning and Execution of Sustainable Intermodal Port-hinterland Transport Networks

    Get PDF
    Globalization has led to a tremendous growth of international trade over the last century amounting to $18.8 trillion in 2014. Approximately 90% of non-bulk cargo is transported in shipping containers. The dominant mode in container transportation is maritime, in which containers are transported from a seaport to another seaport around the globe. Import containers are discharged in seaport container terminals and are destined to inland locations, a reverse process happens for export containers. The inland terminals can be close or far away from the seaport terminals where the containers were discharged. The container transport between the seaport and the inland locations is called port-hinterland transportation. Given the specific physical characteristics and infrastructure of each area this part of the transportation chain can be performed via trucks, trains or river vessels. The sequential use of multiple transport modes in port-hinterland transport is called combined transport. The main aim of this study is to analyze the port-hinterland transportation process and to develop models that support the design, planning and execution of port-hinterland transportation networks with high capacity modes such as barges and trains

    Collaborative fleet deployment and routing for sustainable transport

    Get PDF
    Efficient multi-modal transportation in the hinterland of seaport terminals depends on consolidation of container volumes in support of frequent services of high capacity means of transport, such that sustainable multi-modal transport can compete with uni-modal road transport in cost and time. The tactical design of barge scheduled transport services involves fleet selection and routing through the inland waterway network. The resulting network service design should meet expected demand and service time requirements set by the shippers. We develop a tight MILP formulation for the Fleet Size and Mix Vehicle Routing (FSMVRP) especially adapted for the Port-Hinterland multi-modal barge network design. Also, an analytical model is developed to help understand important design trade-offs made. We consider the case of horizontal cooperation of dry port
    corecore