6 research outputs found

    Deaths and adverse events from adjuvant therapy with immune checkpoint inhibitors in solid malignant tumors: A systematic review and network meta‐analysis

    No full text
    Abstract Background By prolonging overall survival and reducing disease recurrence rates, immune checkpoint inhibitors (ICIs) are an emerging adjuvant therapy option for patients with resectable malignant tumors. However, the safety profile (deaths and adverse events [AEs]) of adjuvant ICIs has not been fully described. Methods We searched the literature for phase III randomized clinical trials that compared PD‐1, PD‐L1, and CTLA‐4 inhibitors in solid malignant tumors. Incidences of death, discontinuation, AEs of any cause, treatment‐related adverse events (TRAEs), and immune‐related adverse events (IRAEs) were extracted for the network meta‐analysis. Network meta‐analyses with low incidence and poor convergence are reported as incidences with 95% confidence intervals (95% CIs). Results Ten randomized clinical trials that included 9243 patients who received ICI adjuvant therapy were eligible. In total, 21 deaths due to TRAEs were recorded, with an overall incidence of 0.40% (95% CI: 0.26–0.61). The treatment‐related mortality rates for ipilimumab (0.76%, 95% CI: 0.31–1.55) and atezolizumab (0.56%, 95% CI: 0.18–1.31) were higher than for pembrolizumab (0.24%, 95% CI: 0.10–0.56) and nivolumab (0.30%, 95% CI: 0.08–0.77). The most frequent causes of death were associated with the gastrointestinal (0.10%, 95% CI: 0.04–0.24) and pulmonary (0.08%, 95% CI: 0.03–0.21) systems. Compared with the control arm, we found that nivolumab (odds ratio [OR]: 2.73, 95% CI: 0.49–15.85) and atezolizumab (OR: 12.43, 95% CI: 2.42–78.48) caused the fewest grade ≥3 TRAEs and IRAEs. Commonly reported IRAEs of special interest were analyzed, and two agents were found to have IRAEs with incidences >10%, i.e., hepatitis for atezolizumab (14.80%, 95% CI: 12.53–17.32) and hypophysitis for ipilimumab (13.53%, 95% CI: 11.38–15.90). Conclusions Ipilimumab and atezolizumab were correlated with higher treatment‐related death rates than pembrolizumab and nivolumab, in which the gastrointestinal and pulmonary systems were mostly involved. Regarding severe TRAEs and IRAEs, nivolumab and atezolizumab are likely to be the safest agent, respectively. This study will guide clinical practice for ICI adjuvant therapies

    Development of Mitomycin C-Loaded Nanoparticles Prepared Using the Micellar Assembly Driven by the Combined Effect of Hydrogen Bonding and π–π Stacking and Its Therapeutic Application in Bladder Cancer

    No full text
    Micelle is mainly used for drug delivery and is prepared from amphiphilic block copolymers. It can be formed into an obvious core-shell structure that can incorporate liposoluble drugs. However, micelles are not suitable for the encapsulation of water-soluble drugs, and it is also difficult to maintain stability in the systemic circulation. To solve these problems, a type of polymer material, Fmoc-Lys-PEG and Fmoc-Lys-PEG-RGD, was designed and synthesized. These copolymers could self-assemble into micelles driven by π–π stacking and the hydrophobic interaction of 9-fluorenylmethoxycarbony (Fmoc) and, at the same time, form a framework for a hydrogen-bonding environment in the core. Mitomycin C (MMC), as a water-soluble drug, can be encapsulated into micelles by hydrogen-bonding interactions. The interaction force between MMC and the polymers was analyzed by molecular docking simulation and Fourier transform infrared (FTIR). It was concluded that the optimal binding conformation can be obtained, and that the main force between the MMC and polymers is hydrogen bonding. Different types of MMC nanoparticles (NPs) were prepared and the physicochemical properties of them were systematically evaluated. The pharmacodynamics of the MMC NPs in vitro and in vivo were also studied. The results show that MMC NPs had a high uptake efficiency, could promote cell apoptosis, and had a strong inhibitory effect on cell proliferation. More importantly, the as-prepared NPs could effectively induce tumor cell apoptosis and inhibit tumor growth and metastasis in vivo

    Development and Evaluation of a PSMA-Targeted Nanosystem Co-Packaging Docetaxel and Androgen Receptor siRNA for Castration-Resistant Prostate Cancer Treatment

    No full text
    Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) during androgen deprivation therapy (ADR) in early stages of prostate cancer. Thus, rather than blocking the androgen-related pathway further, docetaxel (DTX)-based therapy has become the most effective and standard first-line chemotherapy for CRPC. Although the therapy is successful in prolonging the survival of patients with CRPC, chemotherapy resistance develops due to the abnormal activation of the androgen receptor (AR) signaling pathway. Thus, to optimize DTX efficacy, continued maximum suppression of androgen levels and AR signaling is required. Here, we designed a prostate-specific membrane antigen (PSMA)-targeted nanosystem to carry both DTX and AR siRNA (Di-PP/AR-siRNA/DTX) for CRPC treatment. Specifically, DTX was encapsulated into the hydrophobic inner layer, and the AR siRNA was then condensed with the cationic PEI block in the hydrophilic outer layer of the PEI-PLGA polymeric micelles. The micelles were further coated with PSMA-targeted anionic polyethylene glycol-polyaspartic acid (Di-PEG-PLD). In vitro and in vivo results demonstrated that the resulting Di-PP/AR-siRNA/DTX exhibited prolonged blood circulation, selective targeting, and enhanced antitumor effects. Consequently, Di-PP/AR-siRNA/DTX holds great potential for efficient CRPC treatment by combining chemotherapy and siRNA silencing of androgen-related signaling pathways

    Development of Mitomycin C-Loaded Nanoparticles Prepared Using the Micellar Assembly Driven by the Combined Effect of Hydrogen Bonding and π–π Stacking and Its Therapeutic Application in Bladder Cancer

    No full text
    Micelle is mainly used for drug delivery and is prepared from amphiphilic block copolymers. It can be formed into an obvious core-shell structure that can incorporate liposoluble drugs. However, micelles are not suitable for the encapsulation of water-soluble drugs, and it is also difficult to maintain stability in the systemic circulation. To solve these problems, a type of polymer material, Fmoc-Lys-PEG and Fmoc-Lys-PEG-RGD, was designed and synthesized. These copolymers could self-assemble into micelles driven by π–π stacking and the hydrophobic interaction of 9-fluorenylmethoxycarbony (Fmoc) and, at the same time, form a framework for a hydrogen-bonding environment in the core. Mitomycin C (MMC), as a water-soluble drug, can be encapsulated into micelles by hydrogen-bonding interactions. The interaction force between MMC and the polymers was analyzed by molecular docking simulation and Fourier transform infrared (FTIR). It was concluded that the optimal binding conformation can be obtained, and that the main force between the MMC and polymers is hydrogen bonding. Different types of MMC nanoparticles (NPs) were prepared and the physicochemical properties of them were systematically evaluated. The pharmacodynamics of the MMC NPs in vitro and in vivo were also studied. The results show that MMC NPs had a high uptake efficiency, could promote cell apoptosis, and had a strong inhibitory effect on cell proliferation. More importantly, the as-prepared NPs could effectively induce tumor cell apoptosis and inhibit tumor growth and metastasis in vivo

    Latent profile analysis of students’ motivation and outcomes in mathematics: an organismic integration theory perspective

    No full text
    The purpose of the current study was to identify the motivation profiles at the intraindividual level using a latent profile analyses (LPA) approach. A total of 1151 secondary school students aged 13 to 17 years old from Singapore took part in the study. Using LPA, four distinct motivational profiles were identified based on four motivation regulations. Profile 1 has very low introjected and low autonomous motivation (6% of sample). Profile 2 had high external and identified regulations and very low intrinsic regulation (10%). Profile 3 consisted of students with high identified and intrinsic regulations (51%). Profile 4 had moderately low identified and intrinsic regulations (33%). The results showed that the four profiles differed significantly in terms of effort, competence, value, and time spent on math beyond homework. The best profile (Profile 3) reported highest scores in effort, value, competence and time spent on Math beyond homework. The worst profile (Profile 1) reported lowest scores in all the four outcome variables
    corecore