13 research outputs found

    Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop

    Get PDF
    Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment

    Mycotoxins in milk: Occurrence and evaluation of certain detoxification attempts

    No full text
    Abstract Milk contaminated with mycotoxins is a significant issue affecting human health, especially in infants. The current study aimed to investigate the presence of mycotoxins in milk collected from women farmers' vendors (WFV), and to evaluate certain herbal plant fibers as green mycotoxin binders. Moreover, explore the binding efficiency ratios of mycotoxins using shaking or soaking process incorporated with herbal extracts. Furthermore, compare the taste evaluations of tested milk are enriched with herbal extracts. Results indicated that the fumonisins were not detected in the collected cow milk samples but realized a 25% occurrence ratio in buffalo's milk samples. A high occurrence ratio of aflatoxin M1 (aflaM1) was observed in buffalo and cow milk samples. The soaking process of plant fibers in contaminated milk overnight significantly degrades and adsorbs mycotoxins particles. The shacking process incorporated with plant fibers exhibited more effectiveness in mycotoxins degradation than soaking or shacking processes alone. The speed of shacking process played an important role in the mycotoxin's binding process. All the tested plant fibers effectively reduced all mycotoxin presence in contaminated milk, especially green tea, during the soaking or shacking process. Moreover, the shacking process incorporated with plant fibers promoted and supported the mycotoxins degradation process

    Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop

    No full text
    Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment

    The Application of Pomegranate, Sugar Apple, and Eggplant Peel Extracts Suppresses <i>Aspergillus flavus</i> Growth and Aflatoxin B1 Biosynthesis Pathway

    No full text
    Even though the green revolution was a significant turning point in agriculture, it was also marked by the widespread use of chemical pesticides, which prompted severe concerns about their influence on human and environmental health. As a result, the demand for healthier and more environmentally friendly alternatives to control plant diseases and avoid food spoilage is intensifying. Among the proposed alternatives, food by-product extracts, especially from the most consumed fruits in Egypt, eggplant, sugar apple, and pomegranate peel wastes, were largely ignored. Hence, we chose them to evaluate their antifungal and antiaflatoxigenic activities against maize fungus, Aspergillus flavus. All the extracts exhibited multiple degrees of antifungal growth and aflatoxin B1 (AFB1) inhibitory activities (35.52% to 91.18%) in broth media. Additionally, diethyl ether 50% eggplant, ethanol 75% sugar apple, and diethyl ether 25% pomegranate extracts exhibited the highest AFB1 inhibition, of 96.11%, 94.85%, and 78.83%, respectively, after one month of treated-maize storage. At the same time, Topsin fungicide demonstrated an AFB1 inhibition ratio of 72.95%. The relative transcriptional levels of three structural and two regulatory genes, aflD, aflP, aflQ, aflR, and aflS, were downregulated compared to the infected control. The phenolic content (116.88 mg GAEs/g DW) was highest in the 25% diethyl ether pomegranate peel extract, while the antioxidant activity was highest in the 75% ethanol sugar apple extract (94.02 µg/mL). The most abundant active compounds were found in the GC-MS analysis of the fruit peel extracts: α-kaurene, α-fenchene, p-allylphenol, octadecanoic acid, 3,5-dihydroxy phenol, hexestrol, xanthinin, and linoleic acid. Finally, the three fruit peel waste extracts could be a prospective source of friendly ecological compounds that act as environmentally safer and more protective alternatives to inhibit AFB1 production in maize storage

    Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production

    No full text
    Three different concentrations of four (ethanol, acetone, methanol, and diethyl ether) extracts of licorice, doum, and banana peel were evaluated for antifungal and antimycotoxigenic efficiency against a maize aflatoxigenic fungus, Aspergillus flavus. Among them, the licorice diethyl ether 75% extract was intensely active, showing the best wet and dry weight inhibition and exhibiting the highest efficacy ratio (91%). Regarding aflatoxin B1 (AFB1) production, all the plant extracts tested were effective against AFB1 production after one month of maize storage, with average efficacy ratios ranging from 74.1% to 97.5%. At the same time, Thiram fungicide exhibited an efficacy ratio of 20.14%. The relative expression levels of three structural genes (aflD, aflP, and aflQ) and two regulatory genes (aflR and aflS) were significantly downregulated when compared to untreated maize grains or Thiram-treated maize grains. The doum diethyl ether 75% peel extract showed the highest total phenolic content (60.48 mg GAE/g dry extract wt.) and antioxidant activity (84.71 μg/mL). GC–MS analysis revealed that dimethoxycinnamic acid, aspartic acid, valproic acid, and linoleic acid might imbue the extracts with antioxidant capacities in relation to fungal growth and aflatoxin biosynthesis. Finally, the results suggest that the three plant extracts can be considered a promising source for developing potentially effective and environmentally safer alternative ways to control aflatoxin formation, thus creating a potentially protective method for grain storage

    Antifungal and Antiaflatoxigenic Activities of Different Plant Extracts against <i>Aspergillus flavus</i>

    No full text
    In the current study, four organic solvents, including ethanol, methanol, acetone, and diethyl ether, were used to extract turmeric, wheat bran, and taro peel. The efficiency of three different concentrations of each solvent was assessed for their antifungal and anti-mycotoxin production against Aspergillus flavus. The results indicated that 75% ethanolic and 25% methanolic extracts of taro peels and turmeric were active against fungus growth, which showed the smallest fungal dry weight ratios of 1.61 and 2.82, respectively. Furthermore, the 25% ethanolic extract of turmeric showed the best result (90.78%) in inhibiting aflatoxin B1 production. After 30 days of grain storage, aflatoxin B1 (AFB1) production was effectively inhibited, and the average inhibition ratio ranged between 4.46% and 69.01%. Simultaneously, the Topsin fungicide resulted in an inhibition ratio of 143.92%. Taro extract (25% acetone) produced the highest total phenolic content (61.28 mg GAE/g dry extract wt.) and showed an antioxidant capacity of 7.45 μg/mL, followed by turmeric 25% ethanol (49.82 mg GAE/g), which revealed the highest antioxidant capacity (74.16 μg/mL). RT-qPCR analysis indicated that the expression of aflD, aflP, and aflQ (structural genes) and aflR and aflS (regulatory genes) was down-regulated significantly compared to both untreated and Topsin-treated maize grains. Finally, the results showed that all three plant extracts could be used as promising source materials for potential products to control aflatoxin formation, thus creating a safer method for grain storage in the environment than the currently used protective method

    Antifungal and Antiaflatoxigenic Activities of Different Plant Extracts against Aspergillus flavus

    No full text
    In the current study, four organic solvents, including ethanol, methanol, acetone, and diethyl ether, were used to extract turmeric, wheat bran, and taro peel. The efficiency of three different concentrations of each solvent was assessed for their antifungal and anti-mycotoxin production against Aspergillus flavus. The results indicated that 75% ethanolic and 25% methanolic extracts of taro peels and turmeric were active against fungus growth, which showed the smallest fungal dry weight ratios of 1.61 and 2.82, respectively. Furthermore, the 25% ethanolic extract of turmeric showed the best result (90.78%) in inhibiting aflatoxin B1 production. After 30 days of grain storage, aflatoxin B1 (AFB1) production was effectively inhibited, and the average inhibition ratio ranged between 4.46% and 69.01%. Simultaneously, the Topsin fungicide resulted in an inhibition ratio of 143.92%. Taro extract (25% acetone) produced the highest total phenolic content (61.28 mg GAE/g dry extract wt.) and showed an antioxidant capacity of 7.45 &mu;g/mL, followed by turmeric 25% ethanol (49.82 mg GAE/g), which revealed the highest antioxidant capacity (74.16 &mu;g/mL). RT-qPCR analysis indicated that the expression of aflD, aflP, and aflQ (structural genes) and aflR and aflS (regulatory genes) was down-regulated significantly compared to both untreated and Topsin-treated maize grains. Finally, the results showed that all three plant extracts could be used as promising source materials for potential products to control aflatoxin formation, thus creating a safer method for grain storage in the environment than the currently used protective method

    Impact of the COVID-19 pandemic on patients with paediatric cancer in low-income, middle-income and high-income countries: a multicentre, international, observational cohort study

    Get PDF
    OBJECTIVES: Paediatric cancer is a leading cause of death for children. Children in low-income and middle-income countries (LMICs) were four times more likely to die than children in high-income countries (HICs). This study aimed to test the hypothesis that the COVID-19 pandemic had affected the delivery of healthcare services worldwide, and exacerbated the disparity in paediatric cancer outcomes between LMICs and HICs. DESIGN: A multicentre, international, collaborative cohort study. SETTING: 91 hospitals and cancer centres in 39 countries providing cancer treatment to paediatric patients between March and December 2020. PARTICIPANTS: Patients were included if they were under the age of 18 years, and newly diagnosed with or undergoing active cancer treatment for Acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, Wilms' tumour, sarcoma, retinoblastoma, gliomas, medulloblastomas or neuroblastomas, in keeping with the WHO Global Initiative for Childhood Cancer. MAIN OUTCOME MEASURE: All-cause mortality at 30 days and 90 days. RESULTS: 1660 patients were recruited. 219 children had changes to their treatment due to the pandemic. Patients in LMICs were primarily affected (n=182/219, 83.1%). Relative to patients with paediatric cancer in HICs, patients with paediatric cancer in LMICs had 12.1 (95% CI 2.93 to 50.3) and 7.9 (95% CI 3.2 to 19.7) times the odds of death at 30 days and 90 days, respectively, after presentation during the COVID-19 pandemic (p<0.001). After adjusting for confounders, patients with paediatric cancer in LMICs had 15.6 (95% CI 3.7 to 65.8) times the odds of death at 30 days (p<0.001). CONCLUSIONS: The COVID-19 pandemic has affected paediatric oncology service provision. It has disproportionately affected patients in LMICs, highlighting and compounding existing disparities in healthcare systems globally that need addressing urgently. However, many patients with paediatric cancer continued to receive their normal standard of care. This speaks to the adaptability and resilience of healthcare systems and healthcare workers globally
    corecore