9,360 research outputs found
Crystal growth and furnace analysis
A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs
Exploiting network topology for large-scale inference of nonlinear reaction models
The development of chemical reaction models aids understanding and prediction
in areas ranging from biology to electrochemistry and combustion. A systematic
approach to building reaction network models uses observational data not only
to estimate unknown parameters, but also to learn model structure. Bayesian
inference provides a natural approach to this data-driven construction of
models. Yet traditional Bayesian model inference methodologies that numerically
evaluate the evidence for each model are often infeasible for nonlinear
reaction network inference, as the number of plausible models can be
combinatorially large. Alternative approaches based on model-space sampling can
enable large-scale network inference, but their realization presents many
challenges. In this paper, we present new computational methods that make
large-scale nonlinear network inference tractable. First, we exploit the
topology of networks describing potential interactions among chemical species
to design improved "between-model" proposals for reversible-jump Markov chain
Monte Carlo. Second, we introduce a sensitivity-based determination of move
types which, when combined with network-aware proposals, yields significant
additional gains in sampling performance. These algorithms are demonstrated on
inference problems drawn from systems biology, with nonlinear differential
equation models of species interactions
Concurrent -vector fields and energy beta-change
The present paper deals with an \emph{intrinsic} investigation of the notion
of a concurrent -vector field on the pullback bundle of a Finsler manifold
. The effect of the existence of a concurrent -vector field on some
important special Finsler spaces is studied. An intrinsic investigation of a
particular -change, namely the energy -change
($\widetilde{L}^{2}(x,y)=L^{2}(x,y)+ B^{2}(x,y) with \
B:=g(\bar{\zeta},\bar{\eta})\bar{\zeta} \pi\Gamma\widetilde{\Gamma}\beta$-change of the fundamental linear connection in Finsler geometry: the
Cartan connection, the Berwald connection, the Chern connection and the
Hashiguchi connection. Moreover, the change of their curvature tensors is
concluded.
It should be pointed out that the present work is formulated in a prospective
modern coordinate-free form.Comment: 27 pages, LaTex file, Some typographical errors corrected, Some
formulas simpifie
Strategic tensions within the smartphones industry: the case of BlackBerry
This paper reviews some aspects of corporate strategy in a well-known smart phone provider. Two approaches to strategy are analysed: one concerning the industry and the other related to the organization. A general introduction on the smart phones industry is given followed by specific background on BlackBerry. Two perspectives are explored: the first talks about the paradox of compliance and choice within the industry and the second discusses the paradox of control and chaos in BlackBerry. The paper concludes with a brief overview on the company performance from 2006 to 2012 leading to some recommendations
Efficient Localization of Discontinuities in Complex Computational Simulations
Surrogate models for computational simulations are input-output
approximations that allow computationally intensive analyses, such as
uncertainty propagation and inference, to be performed efficiently. When a
simulation output does not depend smoothly on its inputs, the error and
convergence rate of many approximation methods deteriorate substantially. This
paper details a method for efficiently localizing discontinuities in the input
parameter domain, so that the model output can be approximated as a piecewise
smooth function. The approach comprises an initialization phase, which uses
polynomial annihilation to assign function values to different regions and thus
seed an automated labeling procedure, followed by a refinement phase that
adaptively updates a kernel support vector machine representation of the
separating surface via active learning. The overall approach avoids structured
grids and exploits any available simplicity in the geometry of the separating
surface, thus reducing the number of model evaluations required to localize the
discontinuity. The method is illustrated on examples of up to eleven
dimensions, including algebraic models and ODE/PDE systems, and demonstrates
improved scaling and efficiency over other discontinuity localization
approaches
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
One of the major challenges in the Bayesian solution of inverse problems
governed by partial differential equations (PDEs) is the computational cost of
repeatedly evaluating numerical PDE models, as required by Markov chain Monte
Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven
projection-based model reduction technique to reduce this computational cost.
The proposed technique has two distinctive features. First, the model reduction
strategy is tailored to inverse problems: the snapshots used to construct the
reduced-order model are computed adaptively from the posterior distribution.
Posterior exploration and model reduction are thus pursued simultaneously.
Second, to avoid repeated evaluations of the full-scale numerical model as in a
standard MCMC method, we couple the full-scale model and the reduced-order
model together in the MCMC algorithm. This maintains accurate inference while
reducing its overall computational cost. In numerical experiments considering
steady-state flow in a porous medium, the data-driven reduced-order model
achieves better accuracy than a reduced-order model constructed using the
classical approach. It also improves posterior sampling efficiency by several
orders of magnitude compared to a standard MCMC method
A continuous analogue of the tensor-train decomposition
We develop new approximation algorithms and data structures for representing
and computing with multivariate functions using the functional tensor-train
(FT), a continuous extension of the tensor-train (TT) decomposition. The FT
represents functions using a tensor-train ansatz by replacing the
three-dimensional TT cores with univariate matrix-valued functions. The main
contribution of this paper is a framework to compute the FT that employs
adaptive approximations of univariate fibers, and that is not tied to any
tensorized discretization. The algorithm can be coupled with any univariate
linear or nonlinear approximation procedure. We demonstrate that this approach
can generate multivariate function approximations that are several orders of
magnitude more accurate, for the same cost, than those based on the
conventional approach of compressing the coefficient tensor of a tensor-product
basis. Our approach is in the spirit of other continuous computation packages
such as Chebfun, and yields an algorithm which requires the computation of
"continuous" matrix factorizations such as the LU and QR decompositions of
vector-valued functions. To support these developments, we describe continuous
versions of an approximate maximum-volume cross approximation algorithm and of
a rounding algorithm that re-approximates an FT by one of lower ranks. We
demonstrate that our technique improves accuracy and robustness, compared to TT
and quantics-TT approaches with fixed parameterizations, of high-dimensional
integration, differentiation, and approximation of functions with local
features such as discontinuities and other nonlinearities
- …