3 research outputs found

    Ultrasmall dopamine-coated nanogolds: preparation, characteristics, and CT imaging

    No full text
    <p>Water-dispersible ultrasmall nanogolds (WDU AuNPs) and their dopamine-coated nanogolds (WDU AuNPs@DPAs) were prepared by a reduction method with sodium borohydride as a reducing agent and a stabilised agent of 2-mercaptosuccinic acid in aqueous solution. The effects of these nanoparticles on computed tomography (CT) imaging were evaluated. The size distributions and Zeta potential of the nanoparticles were measured with a Malvern size analyser, and nanoparticle morphology was observed by transmission electron microscopy. These characteristics were confirmed by Fourier transform spectroscopy and ultraviolet/visible spectra. It was found that WDU AuNPs@DPAs were 5.4 nm in size with clear core–shell structure. The 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide assay results showed that the WDU AuNPs and WDU AuNPs@DPAs were hypotoxic to different cells. The WDU AuNPs@DPAs showed a much longer circulation time and a larger CT attenuation coefficient than iohexol and could be excreted by the kidney and bladder. These nanoparticles showed considerable potential for future application in CT imaging.</p

    Insight into a Bentonite-Based Hydrogel for the Conservation of Sandstone-Based Cultural Heritage: In Situ Formation, Reinforcement Mechanism, and High-Durability Evaluation

    No full text
    Conservation of sandstone-based cultural heritage has attracted a great deal of interest. We propose herein a novel protecting strategy, via in situ fabrication of bentonite-based hydrogels (B-H) inside sandstones, where the bentonite-based hydrogels serve as the underlying cement. To create bentonite-based hydrogels with controllable structure, possessing good mechanical and anti-swelling properties, we have optimized forming time, appearance, and viscosity. The hydrogel precursor penetrated into the pores of the sandstone; the hydrogel would then form within 3–5 h. As found by employing a fluorescent tracer, the precursor remained controllably in place without any apparent change in the sandstone morphology. The bentonite-based hydrogels that formed inside the sandstones presented strong hydrogen bonding, coordination, and ionic bonding, as well as strong mechanical interlocking to the sandstone matrix. As a result, the sandstones possessed enhanced mechanical compressive strength and excellent resistance to acid, salt, and freeze–thaw cycles. Our approach provides for a non-destructive, eco-friendly, easy-to-use, and long-term strategy for cultural preservation, one with excellent protection effects
    corecore