3 research outputs found

    Oxidation products of 5-methyl cytosine are decreased in senescent cells and tissues of progeroid mice

    Get PDF
    5-Hydroxymethylcytosine and 5-formylcytosine are stable DNA base modifications generated from 5-methylcytosine by the ten-eleven translocation protein family that function as epigenetic markers. 5-Hydroxymethyluracil may also be generated from thymine by ten-eleven translocation enzymes. Here, we asked if these epigenetic changes accumulate in senescent cells, since they are thought to be inversely correlated with proliferation. Testing this in ERCC1-XPF-deficient cells and mice also enabled discovery if these DNA base changes are repaired by nucleotide excision repair. Epigenetic marks were measured in proliferating, quiescent and senescent wild-type (WT) and Ercc1−/− primary mouse embryonic fibroblasts. The pattern of epigenetic marks depended more on the proliferation status of the cells than their DNA repair capacity. The cytosine modifications were all decreased in senescent cells compared to quiescent or proliferating cells, whereas 5-(hydroxymethyl)-2′-deoxyuridine was increased. In vivo, both 5-(hydroxymethyl)-2′-deoxyuridine and 5-(hydroxymethyl)-2′-deoxycytidine were significantly increased in liver tissues of aged WT mice compared to young adult WT mice. Livers of Ercc1-deficient mice with premature senescence and aging had reduced level of 5-(hydroxymethyl)- 2′-deoxycytidine and 5-formyl-2′-deoxycytidine compared to aged-matched WT controls. Taken together, we demonstrate for the first time, that 5-(hydroxymethyl)-2′-deoxycytidine is significantly reduced in senescent cells and tissue, potentially yielding a novel marker of senescence

    ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation

    Get PDF
    Lipid peroxidation (LPO) products are relatively stable and abundant metabolites, which accumulate in tissues of mammals with aging, being able to modify all cellular nucleophiles, creating protein and DNA adducts including crosslinks. Here, we used cells and mice deficient in the ERCC1-XPF endonuclease required for nucleotide excision repair and the repair of DNA interstrand crosslinks to ask if specifically LPO-induced DNA damage contributes to loss of cell and tissue homeostasis. Ercc1-/- mouse embryonic fibroblasts were more sensitive than wild-type (WT) cells to the LPO products: 4-hydroxy-2-nonenal (HNE), crotonaldehyde and malondialdehyde. ERCC1-XPF hypomorphic mice were hypersensitive to CCl4 and a diet rich in polyunsaturated fatty acids, two potent inducers of endogenous LPO. To gain insight into the mechanism of how LPO influences DNA repair-deficient cells, we measured the impact of the major endogenous LPO product, HNE, on WT and Ercc1-/- cells. HNE inhibited proliferation, stimulated ROS and LPO formation, induced DNA base damage, strand breaks, error-prone translesion DNA synthesis and cellular senescence much more potently in Ercc1-/- cells than in DNA repair-competent control cells. HNE also deregulated base excision repair and energy production pathways. Our observations that ERCC1-deficient cells and mice are hypersensitive to LPO implicates LPO-induced DNA damage in contributing to cellular demise and tissue degeneration, notably even when the source of LPO is dietary polyunsaturated fats

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
    corecore