499 research outputs found

    Effect of Sperm Separation Methods on Morphology and Functions of Frozen Buffalo Spermatozoa

    Get PDF
    This work was planned to compare three methods for selection of active buffalo spermatozoa, examine the effects of these separation methods on morphology, viability and functions of spermatozoa used for IVF purposes. Ten frozen straws per trial (10 times) were pooled and divided into 4 aliquots:  A) First aliquot was considered as control without any separation method. B) Second aliquot was subjected to sperm selection by density gradient method (percoll:PureSperm) using 40-80% double density gradient. C) The third aliquot was subjected to swim-up in sp-TALP. D) The fourth aliquot was subjected to washing by centrifugation with sp-TALP. The percentage of motility increased for Percoll, swim up and washing than control (86.0, 73.0, and 66.5 vs. 56.5) respectively. Sperm abnormalities % was significantly decreased after Percoll, swim up and sperm wash separation methods. Spermatozoa obtained by Swim up and Percoll had the highest percentage of intact membrane. Different spermatozoa separation methods significantly increased the lytic activity of the recovered spermatozoa. Live spermatozoa percentage with reacted acrosome significantly increased after both swim up separation and washing. The percentage of dead spermatozoa with reacted acrosome significantly decreased after percoll separation but it did not change when the swim up method was used. Finally it is concluded that, density gradient centrifugation using PureSperm® could be considered as the method of choice for selection of frozen thawed buffalo spermatozoa and presumably with a high potential fertilizing ability. density gradient centrifugation using PureSperm® could be considered as the method of choice for selection of frozen thawed buffalo spermatozoa

    Biological Activities of the Doum Palm (Hyphaene thebaica L.) Extract and Its Bioactive Components

    Get PDF
    The doum palm (Hyphaene thebaica) is a type palm tree which has a wood texture and has edible oval fruits and the origin native to upper Egypt. The trunk of this small palm is dichotomous. It is one of the most important useful plants in the world. All parts of doum palm have a useful role such as fiber and leaflets which used to weave baskets and doum nuts which have antioxidants and secondary metabolites such as tannins, phenols, saponin, steroids, glycosides, flavonoid, terpenes and terpinoids. Also, roots, stems and leaves are used in medicine, ropes and baskets. Studies on anti-inflammatory, antioxidant, antimicrobial, anticancer and pharmacological potential of Hyphaene thebaica extracts and its major phytoconstituents like the phenolic, essential oil and flavonoid compounds are extensively discussed in this review

    Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV

    Get PDF
    Background The removal of phenol from aqueous solution via photocatalytic degradation has been recognized as an environmentally friendly technique for generating clean water. The composite nanofibers containing PAN polymer, CNT, and TiO2_{2} NPs were successfully prepared via electrospinning method. The prepared photocatalyst is characterized by SEM, XRD, and Raman spectroscopy. Different parameters are studied such as catalyst amount, the effect of pH, phenol concentration, photodegradation mechanism, flow rate, and stability of the composite nanofiber to evaluate the highest efficiency of the photocatalyst. Results The composite nanofibers showed the highest photodegradation performance for the removal of phenol using UV light within 7 min. The pH has a major effect on the photodegradation of phenol with its maximum performance being at pH 5. Conclusions Given the stability and flexibility of the composite nanofibers, their use in a dynamic filtration is possible and can be even reused after several cycles

    A ring-connected dual active bridge based DC-DC multiport converter for EV fast-charging stations

    Get PDF
    This paper proposes a multiport DC-DC converter for EV fast-charging stations. The proposed converter is comprised of Ring-Connected Dual Active Bridge (RCDAB) DC-DC converters, where the connection point between every two adjacent DABs provides a DC port. Bypass switches are added to each DAB to eliminate unnecessary power processing stages in the event of idle ports (no EVs) (open circuit ports). The nature of the ring connection of the RCDAB theoretically allows infinite internal power flow solutions within the ring to satisfy a certain power flow scenario at the DC ports, hence, the optimal power flow solution can be selected to minimize total RMS current and losses. Single-phase shift control is applied to this optimization problem to make it simple. A novel closed-loop control scheme using Bisection optimization is developed to minimize the total RMS current. A control-hardware-in-the-loop (CHiL) validation is carried out for a 5-port network of the proposed topology to investigate the converter efficiency and fault tolerance/availability characteristics. Also, an experimental hardware validation is implemented for a 3-port network where different scenarios for power flow and faults are performed. Finally, a comparative discussion between the proposed topology and other multiport topologies in literature is presented revealing the superior performance of the RCDAB topology

    Multiport DC-DC converter with differential power processing for fast EV charging stations

    Get PDF
    With the growing interest in owning electric vehicles due to increased environmental awareness and uncertain energy security together with the development of Li-ion batteries, quietness, and trouble-free operation, it is urgent to develop charging stations that are fast enough to supply the vehicles with energy conveniently, as in case of conventional petrol stations. The main reason that hinders the spread of fast charging stations is the installation cost, comprising the infrastructure and converter costs. In this article, a multiport DC-DC converter with differential power processing stages is proposed for Electric Vehicle (EV) fast charging stations, which results in a considerable reduction in the cost of using converters while achieving high efficiency. The proposed topology consists of two paths for the power flow (outer and inner loops) for EV battery charging with main and auxiliary DC-DC converters in the outer loop; all the ports are connected in series with the main supply, where the bulk power is being transferred. The main DC-DC converter injects a series voltage to control the power in the outer loop. The auxiliary DC-DC converters are rated at a fractional power that controls the partial power supplied to each port through the inner loops. Thanks to the fractional power processed by the auxiliary converter with the remaining power fed to the battery through the main converter, the proposed architecture enables simultaneous charging of multiple electric vehicles with better efficiency, lower cost, and the capability of providing a fault tolerance feature. A PWM control scheme for the converters to achieve bi-directional power flow in the partially rated DC-DC converters is discussed for the proposed system. Moreover, a practical down-scaled hardware prototype is designed to validate the functionality, control scheme, and effectiveness of the proposed topology in different case studies being investigated. The efficiency of the proposed converter is compared to the conventional configuration

    Preparation of H3PO4 modified Sidr biochar for the enhanced removal of ciprofloxacin from water

    Get PDF
    In this study, biochar was prepared from Sidr plant leaves and used for the treatment of ciprofloxacin (CIP)-contaminated water. CIP is important class of emerging water pollutants from pharmaceutical industries. The biochar showed 65% adsorption efficiency and 43.48 mg/g adsorption capacity of CIP. Adsorption efficiency as well as adsorption capacity were improved to 91% and 62.50 mg/g, respectively, by phosphoric acid (H3PO4) modified biochar. Removal of CIP by the prepared biochar was due to different surface functional groups of CIP and biochar as revealed from the study of different characterization analyses. The presence of PO43- group in modified biochar led to maximum binding of CIP. Also, the modified biochar showed higher reusability potential and less leaching of ions when compared to the raw biochar. Removal of CIP was affected by concentrations of CIP, the amount of biochar and different pH\u27s; the maximum removal of CIP was achieved at pH 4. The Freundlich and pseudo-first-order models best fitted the removal of CIP by modified biochar. Advanced characterization techniques were applied to investigate surface and physiological characteristics of the biochar and modified biochar. The modification showed high impact on the performance and stability of biochar. The study showed significant impacts of modification on the potential of the biochar for treatment of CIP-contaminated water
    • …
    corecore