18 research outputs found

    Modeling of High Power Conversion Efficiency Thin Film Solar Cells

    Full text link
    [ES] Las energía solar fotovoltaica ha emergido como una fuente de energía nueva y sostenible, que es ecológica y rentable si la producción es a gran escala. En el escenario actual, los dispositivos fotovoltaicos económicos y de alta eficiencia de conversión sin que se degraden sus componentes están bien posicionados para la generación de electricidad. Las células solares basadas en silicio dominan este mercado desde hace muchos años. Para la fabricación y producción de células solares basadas en silicio, se requieren sofisticadas técnicas de fabricación que hacen que el panel solar sea costoso. Por otra parte estan las células solares de película delgada, las cuales, debido a la intensificación de las capacidades de fabricación están ganando importancia. La tecnología de película delgada es una de las tecnologías más rentables y eficientes para la fabricación de células solares, y es un tema de intensa investigación en la industria fotovoltaica. La tecnología de película delgada es más económica que otras tecnologías porque los dispositivos utilizan menos material y están basados en varios tipos de materiales semiconductores que absorben la luz. Entre estos materiales, las células solares de kesterita que utilizan CZTS, CZTSe y sus aleaciones CZTSSe pueden convertirse en el reemplazo óptimo a los absorbentes de calcopirita. Estos materiales presentan unas características ópticas y eléctricas sobresalientes y tienen un gap óptico directo con una banda prohibida que oscila entre 1,4\ eV\ y 1,5\ eV y un coeficiente de absorción, \alpha>{10}^4{cm}^{-1}. Estas características han propiciado que las kesteritas esten siendo muy investigadas por la comunidad fotovoltaica de películas delgadas. De acuerdo con el límite de Shockley-Queisser, la eficiencia de conversión para una célula solar basada en CZTS\ es alrededor del 28%. Esta eficiencia es teóricamente posible mediante el ajuste de la banda prohibida, pero aún así, todavia no se ha podido alcanzar experimentalmente, probablemente debido a la falta de comprensión de las características de los dispositivos.Para una mejor comprensión de las características de los dispositivos, la modelación numérica puede jugar un papel importante al perimitir estudiar diferentes estructuras de dispositivos que pueden ahorrar tiempo y costos a la comunidad científico-técnica. En este trabajo, se ha llevado a cabo una modelazación numérica para estimar y analizar el efecto de parámetros físicos como el espesor y la concentración de dopado de la capa absorbente, la capa tampón y las capas ventana, además de estudiar el efecto de la temperatura y el efecto de la potencia de iluminación del sol en el rendimiento del dispositivo. El análisis numérico de los dispositivos se realizó con el software de simulación denominado "Solar Cell Capacitance Simulator" (SCAPS-1D). Para ello se analizó una estructura simple p-n-n^+ usando molibdeno como contacto posterior y FTO como ventana óptica y contacto frontal y siguiendo la secuencia de materiales Mo/CZTS/CdS/ZnO/FTO. A través del análisis, se estudió el rendimiento de las células solares con la variación en el espesor del absorbente para encontrar el espesor óptimo de la capa absorbente. También se estudió el efecto de la concentración del dopado y de la función de trabajo del metal. Después de la visualización de una estructura de dispositivo básica en SCAPS-1D, se modelo una célula solar experimental basada en CZTS. Los resultados de las células solares CZTS diseñados experimentalmente se simularon por primera vez en el entorno SCAPS-1D. Los resultados simulados de SCAPS-1D se compararon con los resultados experimentales. Después de la optimización de los parámetros de la celda, se incrementó la eficiencia de conversión de un dispositivo optimizado y, a partir del modelado, se descubrió que el rendimiento del dispositivo mejora al aumentar el tiempo de vida de los porta[CA] L'energia solar fotovoltaica ha emergit com una font d'energia nova i sostenible, que és ecològica i rendible si la producció és a gran escala. En l'escenari actual, els dispositius fotovoltaics econòmics i de gran eficiència de conversió estan ben posicionats per a la generació d'electricitat neta i sostenible. Les cèl·lules solars basades en silici dominen aquest mercat des de fa molts anys. Per a la fabricació i producció de cèl·lules solars basades en silici, es requereixen tècniques de fabricació sofisticades que fan que el panell solar sigui costós. Per altra banda estan les cel·les solars de capa fina, que estan guanyant importància a causa de l'intensificació de les capacitats de fabricació. La tecnologia de capa fina és una de les tecnologies més rentables i eficients per a la fabricació de cel solars, i és un tema d'intensa investigació en la fotovoltaica industrial. La tecnologia de capa fina és més econòmica que altres tecnologies perquè els dispositius utilitzen menys material i estan basats en diversos tipus de materials semiconductors que absorbeixen la llum. Entre aquests materials, les cèl·lules solars de kesterita que utilitzen CZTS, CZTSe i les seves aleacions CZTSSe poden convertir-se en el reemplaçament òptim als absorbents de calcopirita. Aquests materials presenten unes característiques òptiques i elèctriques sobresalientes i tenen un gap òptic directe amb una banda prohibida que oscil·la entre 1,4eV i 1,5eV i un coeficient d'absorció, \alpha>{10}^4{cm}^{-1}. Aquestes característiques han propiciat que les Les kesteritas estan sent molt investigades per la comunitat fotovoltaica de capes primes. D'acord amb el límit de Shockley-Queisser, l'eficiència de conversió per a una cel·la solar basada en CZTS és d'aproximadament 28%. Aquesta eficiència és teòricament possible a través de l'ajust de la banda prohibida, però tot i així, encara no s'ha pogut assolir experimentalment, probablement a causa de la incomprensió del funcionament dels dispositius. Per a una millor comprensió de les característiques i funcionament dels dispositius, la modelització numèrica pot jugar un paper important al permetre estudiar diferents estructures de sistemes que poden estalviar temps i costos a la comunitat científica-tècnica. En aquest treball, s'ha dut a terme una modelització numèrica per estimar i analitzar l'efecte de paràmetres físics com l'espessor i la concentració de dopatge de la capa absorbent, la capa tampó i la capa finestra, a més d'estudiar l'efecte de la temperatura i l'efecte de la potència d'il·luminació del sol en el rendiment del dispositiu. L'anàlisi numèrica dels dispositius es va realitzar amb el programari de simulació denominat "Solar Cell Capacitance Simulator" (SCAPS-1D). Per això es va analitzar una estructura senzilla p-n-n^+ utilitzant molibdé com contacte posterior i FTO com a finestra òptica i contacte frontal i seguint la seqüència de materials Mo/CZTS/CdS/ZnO/FTO. A través de l'anàlisi, es va estudiar el rendiment de les cel·les solars amb la variació en l'espessor de l'absorbent per trobar l'espessor òptim de la capa absorbent. També es va estudiar l'efecte de la concentració del dopatge i de la funció de treball del metall. Després de la visualització d'una estructura de dispositiu bàsic en SCAPS-1D, es model una cel·la solar experimental basada en CZTS. Els resultats de les cel·les solars CZTS dissenyats experimentalment es simularen per primera vegada en l'entorn SCAPS-1D. Els resultats simulats de SCAPS-1D es van comparar amb els resultats experimentals. Després de l'optimització dels paràmetres de la celda, es va incrementar l'eficiència de conversió d'un dispositiu optimitzat i, a partir del modelatge, es va descobrir que el rendiment del dispositiu es millora a l'augmentar la vida útil dels minoritaris, cosa que es aconsegueix amb la incorporació d'un camp elèctric a la superfície del con[EN] The solar cell has emerged as a newer and a relatively sustainable energy source, that is eco-friendly and cost-effective if the production is on a larger scale. In the current scenario, the economic and high-power conversion efficiency photovoltaic devices without degradation of materials are designed for the generation of electricity. The silicon-based solar cells dominated the market for many years. For the manufacturing and production of silicon-based solar cells, sophisticated fabrication techniques are required that make the solar panel costly. Due to intensification in manufacturing capabilities, thin film solar cells are gaining significance. Thin film technology is one of the most cost-effective and efficient technologies for the manufacturing of solar cells, and it is an excellent subject of intense research in the photovoltaic industry. Thin film technology is economical than other technologies because devices have relatively less material and are based on various types of light absorbing semiconductor materials. Among these materials, kesterite solar cells utilizing CZTS, CZTSe and their alloys CZTSSe are emerging as the most auspicious replacement for the chalcopyrite absorbers. The outstanding electrical and optical features having direct optical band gap ranges among 1.4eV to 1.5eV and large absorption coefficient \alpha\ >{10}^4{cm}^{-1} of CZTS have made it very interesting in the thin film community. According to the Shockley-Queisser limit, the optimum conversion efficiency of around 28\ % is theoretically possible from a CZTS based solar cell by tuning the band gap, but still, it is not experimentally possible to achieve 28% conversion efficiency from a solar cell due to lack of understanding of device characteristics. For a better understanding of device characteristics, numerical modeling can play a significant role by modeling different device structures that can save time and cost of the research community. In this work, numerical modeling was carried out for estimating and analyzing the effect of physical parameters such as thickness and doping concentration of absorber, buffer and window layers, temperature effect and effect of illumination power of the sun on device performance. Device modeling had performed on the dedicated simulation software "Solar Cell Capacitance Simulator" (SCAPS-1D). To achieve this task first, a simple {p-n-n}^+ structure for Mo/CZTS/CdS/ZnO/FTO had been analyzed with molybdenum as back contact and FTO as a front contact. Through analysis, it had been found that solar cell performance was affected by variation in absorber thickness, doping concentration, and metal work function. After visualization of a basic device structure in SCAPS-1D, CZTS based experimental solar cell had been modeled. Experimentally designed CZTS solar cell results were first simulated in SCAPS-1D environment. The SCAPS-1D simulated results were then compared with experimental results. After optimization of cell parameters, the conversion efficiency of an optimized device was increased and from modeling, it had been found that device performance was improved by improving minority carrier lifetime and integration of back surface field at the back contact. Based on the results presented, it was found that recombination in a solar cell can greatly affect the performance of a solar cell. Therefore, a new structure (Back\ contact/CFTS/ZnS/Zn(O,S)/FTO) was modeled and analyzed in which interface recombination is reduced by optimizing the band gap of Zn(O,S) layer. Based on different device structure modeling, it was found that solar cell with structure CFTS/ZnS/Zn(O,S)/FTO can exhibit an efficiency of 26.11% with optimized physical parameters like absorber thickness layer of 4\mu m and acceptor concentration density of 2\times{10}^{18}\ {cm}^{-3}. The proposed results will give a valuable guideline for the feasible fabrication and designing of high-power conversion efficiency solar cells.Khattak, YH. (2019). Modeling of High Power Conversion Efficiency Thin Film Solar Cells [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11880

    Opportunities, Challenges, and Future Prospects of the Solar Cell Market

    Full text link
    [EN] The production and consumption of energy must be converted to renewable alternatives in order to meet climate targets. During the past few decades, solar photovoltaic systems (PVs) have become increasingly popular as an alternative energy source. PVs generate electricity from sunlight, but their production has required governmental support through market interventions due to their lack of competitiveness on the energy market. Despite 40 years of attempts to establish PV technology through such interventions, the aim of this paper is to find out what general conclusions can be drawn regarding different technologies. Our study examines peer-reviewed studies from the start of PV technology up to 2023 to answer these questions. The literature indicates that not only developed countries but also developing and emerging nations possess significant potential to mitigate the adverse effects of climate change by adopting renewable energy sources. Leading market players can offer support to these less developed countries by subsidizing both equipment and installation processes. As a result, this initiative can contribute to sustainable development on our planet.The author Amal Bouich acknowledges MCIN for funding support through Margarita Salas Fellowship (MCIN/AEI/10.13039/501100011033). This work has been funded by the Ministerio de Ciencia e Innovacion (Spain) and by the Spanish Agencia Estatal de Investigacion through projects BESTMAT PID2019-107137RB-C21/AEI/10.13039/501100011033 and PID2019-107137RB-C22/AEI/10.13039/501100011033 and by the ERDF under the funding project "A way of making Europe".Bouich, A.; Guaita-Pradas, I.; Aziz Khan, M.; Hameed Khattak, Y. (2023). Opportunities, Challenges, and Future Prospects of the Solar Cell Market. Sustainability. 15(21):1-15. https://doi.org/10.3390/su152115445115152

    Numerical Modeling Baseline for high efficiency (Cu2FeSnS4) CFTS based Thin Film Kesterite Solar Cell

    Full text link
    [EN] Cu2FeSnS4 (CFTS) is auspicious nontoxic and earth abundant semiconductor compound having kesterite symmetrical structure. It is an attractive and suitable material for the fabrication of low cost, high efficiency and sustainable thin film photovoltaic cell. ¿¿¿¿¿¿¿¿ based kesterite photovoltaic cell device modeling was performed in this work. The influence of device parameters such as the thickness, acceptor and donor carrier concentration densities of absorber and electron transport layer (ETL), effect of back contact metal work function and the temperature effect on the performance of ¿¿¿¿¿¿¿¿ based kesterite photovoltaic cell is analyzed by using one dimensional solar cell capacitance simulator (SCAPS) software. In this work, promising optimized results had been achieved with the conversion efficiency of 19.97%, fill factor (¿¿¿¿) 85.94 %, short-circuit current (¿¿¿¿¿¿ ) 23.37 ¿¿¿¿/¿¿¿ 2 and open circuit voltage (¿¿¿¿¿¿ ) 0.995V. The above results will give imperative baselines and feasible directions for the fabrication of higher efficiency ¿¿¿¿¿¿¿¿ based photovoltaic cellThis work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).Khattak, YH.; Baig, F.; Ullah, S.; Marí, B.; Ullah, H. (2018). Numerical Modeling Baseline for high efficiency (Cu2FeSnS4) CFTS based Thin Film Kesterite Solar Cell. Optik - International Journal for Light and Electron Optics. 164:547-555. https://doi.org/10.1016/j.ijleo.2018.03.055S54755516

    Enhancement of the conversion efficiency of thin film kesterite solar cell

    Full text link
    [EN] Cu2ZnSnS4(CZTS) is a non-toxic earth abundant material and a promising quaternary semiconductor compound of groups I - II - IV - VI having a kesterite symmetrical structure. Due to its optimum direct bandgap, it has been considered as a suitable material for absorber layers for photovoltaic cell applications. This paper presents the numerical simulation and modeling of CZTS based thin film kesterite photovoltaic cells using SCAP-1D software. The influence of device parameters such as the carrier concentration, thickness, densities of absorber, buffer and window layers, defect densities and the temperature effect on the performance of the ZnO/CdS/CZTS/Mo photovoltaic cell structure are analyzed. Defect densities are added to the absorber layer and the interface between the buffer layer and the absorber layer. This type of solar cell does not comprise any toxic material and can lead to non-toxic thin film photovoltaic cells with outstanding optical properties. In this work, promising optimized results had been achieved with a conversion efficiency of 23.72%, a fill factor of 82.54%, a short-circuit current (J(sc)) of 44.87 mA/cm(2), and an open circuit voltage (V-oc) of 0.64V. Published by AIP Publishing.This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).Khattak, YH.; Baig, F.; Ullah, S.; Marí, B.; Ullah, H. (2018). Enhancement of the conversion efficiency of thin film kesterite solar cell. Journal of Renewable and Sustainable Energy. 10(3). https://doi.org/10.1063/1.5023478S10

    Modeling of High Power Conversion Efficiency Thin Film Solar Cells

    Full text link
    [ES] Las energía solar fotovoltaica ha emergido como una fuente de energía nueva y sostenible, que es ecológica y rentable si la producción es a gran escala. En el escenario actual, los dispositivos fotovoltaicos económicos y de alta eficiencia de conversión sin que se degraden sus componentes están bien posicionados para la generación de electricidad. Las células solares basadas en silicio dominan este mercado desde hace muchos años. Para la fabricación y producción de células solares basadas en silicio, se requieren sofisticadas técnicas de fabricación que hacen que el panel solar sea costoso. Por otra parte estan las células solares de película delgada, las cuales, debido a la intensificación de las capacidades de fabricación están ganando importancia. La tecnología de película delgada es una de las tecnologías más rentables y eficientes para la fabricación de células solares, y es un tema de intensa investigación en la industria fotovoltaica. La tecnología de película delgada es más económica que otras tecnologías porque los dispositivos utilizan menos material y están basados en varios tipos de materiales semiconductores que absorben la luz. Entre estos materiales, las células solares de kesterita que utilizan CZTS, CZTSe y sus aleaciones CZTSSe pueden convertirse en el reemplazo óptimo a los absorbentes de calcopirita. Estos materiales presentan unas características ópticas y eléctricas sobresalientes y tienen un gap óptico directo con una banda prohibida que oscila entre 1,4\ eV\ y 1,5\ eV y un coeficiente de absorción, \alpha>{10}^4{cm}^{-1}. Estas características han propiciado que las kesteritas esten siendo muy investigadas por la comunidad fotovoltaica de películas delgadas. De acuerdo con el límite de Shockley-Queisser, la eficiencia de conversión para una célula solar basada en CZTS\ es alrededor del 28%. Esta eficiencia es teóricamente posible mediante el ajuste de la banda prohibida, pero aún así, todavia no se ha podido alcanzar experimentalmente, probablemente debido a la falta de comprensión de las características de los dispositivos.Para una mejor comprensión de las características de los dispositivos, la modelación numérica puede jugar un papel importante al perimitir estudiar diferentes estructuras de dispositivos que pueden ahorrar tiempo y costos a la comunidad científico-técnica. En este trabajo, se ha llevado a cabo una modelazación numérica para estimar y analizar el efecto de parámetros físicos como el espesor y la concentración de dopado de la capa absorbente, la capa tampón y las capas ventana, además de estudiar el efecto de la temperatura y el efecto de la potencia de iluminación del sol en el rendimiento del dispositivo. El análisis numérico de los dispositivos se realizó con el software de simulación denominado "Solar Cell Capacitance Simulator" (SCAPS-1D). Para ello se analizó una estructura simple p-n-n^+ usando molibdeno como contacto posterior y FTO como ventana óptica y contacto frontal y siguiendo la secuencia de materiales Mo/CZTS/CdS/ZnO/FTO. A través del análisis, se estudió el rendimiento de las células solares con la variación en el espesor del absorbente para encontrar el espesor óptimo de la capa absorbente. También se estudió el efecto de la concentración del dopado y de la función de trabajo del metal. Después de la visualización de una estructura de dispositivo básica en SCAPS-1D, se modelo una célula solar experimental basada en CZTS. Los resultados de las células solares CZTS diseñados experimentalmente se simularon por primera vez en el entorno SCAPS-1D. Los resultados simulados de SCAPS-1D se compararon con los resultados experimentales. Después de la optimización de los parámetros de la celda, se incrementó la eficiencia de conversión de un dispositivo optimizado y, a partir del modelado, se descubrió que el rendimiento del dispositivo mejora al aumentar el tiempo de vida de los porta[CAT] L'energia solar fotovoltaica ha emergit com una font d'energia nova i sostenible, que és ecològica i rendible si la producció és a gran escala. En l'escenari actual, els dispositius fotovoltaics econòmics i de gran eficiència de conversió estan ben posicionats per a la generació d'electricitat neta i sostenible. Les cèl·lules solars basades en silici dominen aquest mercat des de fa molts anys. Per a la fabricació i producció de cèl·lules solars basades en silici, es requereixen tècniques de fabricació sofisticades que fan que el panell solar sigui costós. Per altra banda estan les cel·les solars de capa fina, que estan guanyant importància a causa de l'intensificació de les capacitats de fabricació. La tecnologia de capa fina és una de les tecnologies més rentables i eficients per a la fabricació de cel solars, i és un tema d'intensa investigació en la fotovoltaica industrial. La tecnologia de capa fina és més econòmica que altres tecnologies perquè els dispositius utilitzen menys material i estan basats en diversos tipus de materials semiconductors que absorbeixen la llum. Entre aquests materials, les cèl·lules solars de kesterita que utilitzen CZTS, CZTSe i les seves aleacions CZTSSe poden convertir-se en el reemplaçament òptim als absorbents de calcopirita. Aquests materials presenten unes característiques òptiques i elèctriques sobresalientes i tenen un gap òptic directe amb una banda prohibida que oscil·la entre 1,4eV i 1,5eV i un coeficient d'absorció, \alpha>{10}^4{cm}^{-1}. Aquestes característiques han propiciat que les Les kesteritas estan sent molt investigades per la comunitat fotovoltaica de capes primes. D'acord amb el límit de Shockley-Queisser, l'eficiència de conversió per a una cel·la solar basada en CZTS és d'aproximadament 28%. Aquesta eficiència és teòricament possible a través de l'ajust de la banda prohibida, però tot i així, encara no s'ha pogut assolir experimentalment, probablement a causa de la incomprensió del funcionament dels dispositius. Per a una millor comprensió de les característiques i funcionament dels dispositius, la modelització numèrica pot jugar un paper important al permetre estudiar diferents estructures de sistemes que poden estalviar temps i costos a la comunitat científica-tècnica. En aquest treball, s'ha dut a terme una modelització numèrica per estimar i analitzar l'efecte de paràmetres físics com l'espessor i la concentració de dopatge de la capa absorbent, la capa tampó i la capa finestra, a més d'estudiar l'efecte de la temperatura i l'efecte de la potència d'il·luminació del sol en el rendiment del dispositiu. L'anàlisi numèrica dels dispositius es va realitzar amb el programari de simulació denominat "Solar Cell Capacitance Simulator" (SCAPS-1D). Per això es va analitzar una estructura senzilla p-n-n^+ utilitzant molibdé com contacte posterior i FTO com a finestra òptica i contacte frontal i seguint la seqüència de materials Mo/CZTS/CdS/ZnO/FTO. A través de l'anàlisi, es va estudiar el rendiment de les cel·les solars amb la variació en l'espessor de l'absorbent per trobar l'espessor òptim de la capa absorbent. També es va estudiar l'efecte de la concentració del dopatge i de la funció de treball del metall. Després de la visualització d'una estructura de dispositiu bàsic en SCAPS-1D, es model una cel·la solar experimental basada en CZTS. Els resultats de les cel·les solars CZTS dissenyats experimentalment es simularen per primera vegada en l'entorn SCAPS-1D. Els resultats simulats de SCAPS-1D es van comparar amb els resultats experimentals. Després de l'optimització dels paràmetres de la celda, es va incrementar l'eficiència de conversió d'un dispositiu optimitzat i, a partir del modelatge, es va descobrir que el rendiment del dispositiu es millora a l'augmentar la vida útil dels minoritaris, cosa que es aconsegueix amb la incorporació d'un camp elèctric a la superfície del con[EN] The solar cell has emerged as a newer and a relatively sustainable energy source, that is eco-friendly and cost-effective if the production is on a larger scale. In the current scenario, the economic and high-power conversion efficiency photovoltaic devices without degradation of materials are designed for the generation of electricity. The silicon-based solar cells dominated the market for many years. For the manufacturing and production of silicon-based solar cells, sophisticated fabrication techniques are required that make the solar panel costly. Due to intensification in manufacturing capabilities, thin film solar cells are gaining significance. Thin film technology is one of the most cost-effective and efficient technologies for the manufacturing of solar cells, and it is an excellent subject of intense research in the photovoltaic industry. Thin film technology is economical than other technologies because devices have relatively less material and are based on various types of light absorbing semiconductor materials. Among these materials, kesterite solar cells utilizing CZTS, CZTSe and their alloys CZTSSe are emerging as the most auspicious replacement for the chalcopyrite absorbers. The outstanding electrical and optical features having direct optical band gap ranges among 1.4eV to 1.5eV and large absorption coefficient \alpha\ >{10}^4{cm}^{-1} of CZTS have made it very interesting in the thin film community. According to the Shockley-Queisser limit, the optimum conversion efficiency of around 28\ % is theoretically possible from a CZTS based solar cell by tuning the band gap, but still, it is not experimentally possible to achieve 28% conversion efficiency from a solar cell due to lack of understanding of device characteristics. For a better understanding of device characteristics, numerical modeling can play a significant role by modeling different device structures that can save time and cost of the research community. In this work, numerical modeling was carried out for estimating and analyzing the effect of physical parameters such as thickness and doping concentration of absorber, buffer and window layers, temperature effect and effect of illumination power of the sun on device performance. Device modeling had performed on the dedicated simulation software "Solar Cell Capacitance Simulator" (SCAPS-1D). To achieve this task first, a simple {p-n-n}^+ structure for Mo/CZTS/CdS/ZnO/FTO had been analyzed with molybdenum as back contact and FTO as a front contact. Through analysis, it had been found that solar cell performance was affected by variation in absorber thickness, doping concentration, and metal work function. After visualization of a basic device structure in SCAPS-1D, CZTS based experimental solar cell had been modeled. Experimentally designed CZTS solar cell results were first simulated in SCAPS-1D environment. The SCAPS-1D simulated results were then compared with experimental results. After optimization of cell parameters, the conversion efficiency of an optimized device was increased and from modeling, it had been found that device performance was improved by improving minority carrier lifetime and integration of back surface field at the back contact. Based on the results presented, it was found that recombination in a solar cell can greatly affect the performance of a solar cell. Therefore, a new structure (Back\ contact/CFTS/ZnS/Zn(O,S)/FTO) was modeled and analyzed in which interface recombination is reduced by optimizing the band gap of Zn(O,S) layer. Based on different device structure modeling, it was found that solar cell with structure CFTS/ZnS/Zn(O,S)/FTO can exhibit an efficiency of 26.11% with optimized physical parameters like absorber thickness layer of 4\mu m and acceptor concentration density of 2\times{10}^{18}\ {cm}^{-3}. The proposed results will give a valuable guideline for the feasible fabrication and designing of high-power conversion efficiency solar cells.Khattak, YH. (2019). Modeling of High Power Conversion Efficiency Thin Film Solar Cells [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118802TESI

    Effect of Cu2O Back Surface Field on the Efficiency Enhancement of CZTSe Kesterite Photovoltaic Cell

    Full text link
    [EN] The earth abundant materiel Cu2ZnSnSe4 (CZTSe) is a promising quaternary semiconductor compound having kesterite symmetrical structure. CZTSe is considered as suitable absorber material for photovoltaic cell applications due to its optimum direct band gap. Cu2O/CZTSe/CdS/ZnO photovoltaic solar cell is proposed in this paper. Numerical modeling and analysis of the proposed cell is performed by using Solar Cell Capacitance Simulator (SCAPS). To analyze the effects on the cell performance different physical parameters are varied such as the thickness of the buffer and absorber layers and their carrier densities. Under 1.5 AM illumination condition, the proposed cell shows promising results and had achieved power conversion efficiency (PCE) of 25.95%, fill factor (FF) 85.24%, short circuit current (J(sc)) 31.41 mA/cm(2) and (V-oc) 0.97 V.This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).Khattak, YH.; Baig, F.; Marí, B. (2018). Effect of Cu2O Back Surface Field on the Efficiency Enhancement of CZTSe Kesterite Photovoltaic Cell. Materials Focus. 7(5):604-609. https://doi.org/10.1166/mat.2018.1563S6046097

    Low-cost kesterite (CZTS) bilayers as an effective hole-transport layer for perovskite solar cells

    Full text link
    [EN] This study investigates the utility of Copper Zinc Tin Sulfide (CZTS) thin films as inorganic hole-transporting layers (HTLs) in low-temperature perovskite solar cells (PSCs). The primary goal is to improve power conversion efficiencies (PCE) in PSCs using CZTS thin films fabricated through solution-based methods, with CH3NH3PbI3 perovskite and ZnO serving as the light-absorbing and electron-transporting components, respectively. Precise control over CZTS thin film growth significantly influences the formation of uniform perovskite layers. The study underscores the importance of achieving dense ZnO films with suitable grain sizes to confirm consistent coverage of perovskite films, enabling efficient charge transport while reducing recombination at the CZTS/perovskite interface. Results reveal that CZTS/CZTS bilayers exhibit superior photoelectrochemical performance compared to conventional CZTS (A)/FTO and CZTS (B)/CZTS (A) configurations. Evaluation of water splitting performance demonstrates that the CZTS/CZTS bilayer photoelectrode achieves the maximum photocurrent density, reaching 12 mA/cm2 vs. Ag/AgCl, with an Incident Photon-to-Current Efficiency of 9 % at 400 nm and an applied potential of 0.4V vs. Ag/AgCl. The study comprehensively examines CZTS impact on PSC photovoltaic properties and stability, culminating in a high-performance device with a PCE potential of up to 7 %. This underscores the pivotal role of CZTS- perovskite contacts in determining PSC photovoltaic performance and highlights CZTS potential as a versatile HTM for various PSCs designs.The author extend their appreciation to the deanship of scientific research at Shaqra University for funding this research work through the project number (SU-ANN-202252).Bouhjar, F.; Derbali, L.; Khattak, YH.; Marí, B. (2024). Low-cost kesterite (CZTS) bilayers as an effective hole-transport layer for perovskite solar cells. Optical Materials. 147. https://doi.org/10.1016/j.optmat.2023.11458214

    Performance investigation of experimentally fabricated lead iodide perovskite solar cell via numerical analysis

    Full text link
    [EN] A fabricated perovskite solar cell structure Spiro- OMeTAD/MAPbI(3)/TiO(2 )showing a maximum efficiency of 14.7%, employing a cost-effective single-step spin-coating method, with controlled humidity of 35% under ambient conditions, is reported. In the same controlled conditions, eight set of devices with the same structure sequence were fabricated with distinctive performance parameters varying from 10.14% to 14.7%. All devices were fabricated under the same operating conditions and in a controlled humidity environment. To further augment the device performance, the photovoltaic parameters were numerically calculated and equated with experimental values. A detailed analysis was conducted to propose a novel efficient device structure having efficiency of 27.13%. Results were obtained through a stepwise procedure by performing numerical analysis on the experimentally fabricated device. The experimental findings were first replicated in solar cell capacitance simulator software, and validation was carried out by fitting the JV curve of a best fabricated device under the influence of distinct factors such as the active layer and the interface defects. Different compound materials were also applied as an alternative HTL as a substitute of Spiro OMeTAD in a primary optimized device. Detailed analysis gives CZTSe kesterite as most suitable HTL layer for the lead iodide-based perovskite device. Finally, the appropriate band offset engineering was applied to select the electron transport layer, and the best novel structure CZTSe/MAPbI(3)/Cd1-xZnxS/FTO was proposed, which can be easily and economically manufactured. The functional parameters taken by the proposed device configuration were PCE, FF, J(sc) and V-oc set as 27.13%, 88.90%, 26.45mA/cm(2), and 1.12 V respectively. The presented concepts and guidelines will perform a significant role and will categorically project feasible fabrication approaches for economical and efficient devices.Ministerio de Economia y Competitividad (PID2019-107137RB-C21).Khattak, YH.; Vega, E.; Baig, F.; Marí, B. (2022). Performance investigation of experimentally fabricated lead iodide perovskite solar cell via numerical analysis. Materials Research Bulletin. 151:1-17. https://doi.org/10.1016/j.materresbull.2022.11180211715

    Numerical analysis of a novel CNT/Cu2O/Sb2Se /In2S3/ITO antimony selenide solar cell

    Full text link
    [EN] Sb2Se3 antimony selenide is a great potential for solar cell commercial application with good absorption coefficient and optimal band gap. In recent years the maximum power conversion efficiency (PCE) achieved from Sb2Se3 is about 6.5% with CNT/PbS/Sb2Se3/CdS/ITO structure. In this structure PbS works as hole transport material (HTM), CdS as buffer layer and Au as back contact. But the toxic nature of (Cd, Pb) and high cost of Au contact it cannot be considered for commercial application. Because of this reason for the first-time alternate solar cell structure with Cu2O as HTM layer, In2S3 as buffer layer and carbon nano tube (CNT) electrode used as a back contact is proposed in this work for Sb2Se3. Device modeling for solar cell with structure CNT/Cu2O/Sb2Se3/In2S3/ITO was performed in solar cell capacitance simulator (SCAPS). After optimization of physical parameters like absorber thickness, acceptor doping of absorber layer, donor doping of buffer and replacing CdS buffer layer with In2S3 efficiency of experimentally designed cell jumped from 6.5% to 13.20%.This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2R) and Generalitat valenciana (Prometeus2014/044).Baig, F.; Khattak, YH.; Beg, S.; Marí, B. (2019). Numerical analysis of a novel CNT/Cu2O/Sb2Se /In2S3/ITO antimony selenide solar cell. Optik - International Journal for Light and Electron Optics. 197:1-8. https://doi.org/10.1016/j.ijleo.2019.163107S1819

    Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling

    Full text link
    [EN] Copper barium tin sulfide (CBTS) is a direct band gap earth abundant, non-toxic and quaternary semiconductor compound. It is used as absorber because of its direct band gap of 1.9 eV. A numerical guide is proposed for CBTS-based photovoltaic cell to enhance the efficiency of experimentally designed device with introducing Cu2O as back surface field (BSF) layer by means of numerical modeling. Device optimization was performed in SCAPS-1D software under 1.5 AM illumination spectrum. After introducing BSF layer and optimized physical parameters, promising result was achieved with PCE of 9.72%, V-oc of 0.81 V, J(sc) of 15.73 mA/cm(2) and FF of 78.23%. The promising outcomes of this work will give a guideline for the feasible production of high-efficiency inorganic CBTS-based photovoltaic cells.This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).Khattak, YH.; Baig, F.; Toura, H.; Beg, S.; Marí, B. (2019). Efficiency Enhancement of Cu2BaSnS4 Experimental Thin film Solar Cell by Device Modeling. Journal of Materials Science. 54(24):14787-14796. https://doi.org/10.1007/s10853-019-03942-6S14787147965424Küçükaçıl Artun G, Polat N, Yay OD, Özden Üzmez Ö, Arı A, Tuna Tuygun G, Elbir T, Altuğ H, Dumanoğlu Y, Döğeroğlu T, Dawood A, Odabasi M, Gaga EO (2017) An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling. Atmos Environ 150:331–345. https://doi.org/10.1016/j.atmosenv.2016.11.025Khattak YH, Mahmood T, Alam K, Sarwar T, Ullah I, Ullah H, Ullah UH (2014) Inayat, Smart energy management system for utility source and photovoltaic power system using FPGA and ZigBee. Am J Electr Power Energy Syst 3:86–94. https://doi.org/10.11648/j.epes.20140305.11Ge J, Koirala P, Grice CR, Roland PJ, Yu Y, Tan X, Ellingson RJ, Collins RW, Yan Y (2017) Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv Energy Mater 7:160180301–160180310. https://doi.org/10.1002/aenm.201601803Steinmann V, Brandt RE, Buonassisi T (2015) Non-cubic solar cell materials. Nat Photon 9:355–357. https://doi.org/10.1038/nphoton.2015.85Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM, Powalla M (2015) Properties of Cu(In, Ga)Se 2 solar cells with new record efficiencies up to 21.7%. Phys Status Solidi Rapid Res Lett 9:28–31. https://doi.org/10.1002/pssr.201409520Shin D, Saparov B, Mitzi DB (2017) Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater. https://doi.org/10.1002/aenm.201602366Paper C, Le A, Universit D, Universit B, Universit MA, Marchionna S, Sistema R, View T, Le Donne A (2017) Earth-abundant thin film solar cells based on Cu2MnSnS4. In: European photovoltaic solar energy conference, pp 25–29Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Enhancement of the conversion efficiency of thin film kesterite solar cell. J Renew Sustain Energy 10:033514–03350101. https://doi.org/10.1063/1.5023478Fontané MYVX, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Pérez-Rodríguez JRMA (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe, Zn)SnS 4. J Alloy Compd J 539:190–194. https://doi.org/10.1016/j.jallcom.2012.06.042Zhang X, Bao N, Ramasamy K, Wang YY-HA, Wang YY-HA, Lin B, Gupta A (2012) Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chem Commun. 48:4956–4958. https://doi.org/10.1039/c2cc31648jMohammadnejad S, Baghban Parashkouh A (2017) CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl Phys A Mater Sci Process 123:1–9. https://doi.org/10.1007/s00339-017-1371-xAdewoyin AD, Olopade MA, Chendo M (2017) Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik (Stuttg) 133:122–131. https://doi.org/10.1016/j.ijleo.2017.01.008Boutebakh FZ, Zeggar ML, Attaf N, Aida MS (2017) Electrical properties and back contact study of CZTS/ZnS heterojunction. Opt Int J Light Electron Opt 144:180–190. https://doi.org/10.1016/j.ijleo.2017.06.080Ananthakumar S, Ram Kumar J, Moorthy Babu S (2016) Synthesis of Cu2ZnSnSe4 hierarchical nanostructures by colloidal method. Opt Int J Light Electron Opt 127:10360–10365. https://doi.org/10.1016/j.ijleo.2016.08.058Oueslati H, Ben Rabeh M, Kanzari M (2018) Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method. Appl Phys A 1:18–339. https://doi.org/10.1007/s00339-018-1566-9Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Numerical modeling baseline for high efficiency (Cu 2 FeSnS 4) CFTS based thin film kesterite solar cell. Optik (Stuttg) 164:547–555. https://doi.org/10.1016/j.ijleo.2018.03.055Khattak YH, Baig F, Ullah S, Soucase BM, Beg S, Ullah H, Marí B, Beg S, Ullah H (2018) Efficiency enhancement of Cu2FeSnS4 based thin film solar cell: a numerical analysis. J. Nanoelectron Optoelectron 13:1096–1101. https://doi.org/10.1166/jno.2018.2337Xiao Z, Meng W, Li JV, Yan Y (2017) Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4. ACS Energy Lett 2:29–35. https://doi.org/10.1021/acsenergylett.6b00577Shin D, Saparov B, Zhu T, Huhn WP, Blum V, Mitzi DB (2016) BaCu2Sn(S, Se)4: earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780. https://doi.org/10.1021/acs.chemmater.6b01832Repins IL, Romero MJ, Li JV, Wei S-H, Kuciauskas D, Jiang C-S, Beall C, DeHart C, Mann J, Hsu W-C, Teeter G, Goodrich A, Noufi R (2013) Kesterite successes, ongoing work, and challenges: a perspective from vacuum deposition. IEEE J Photovolt 3:439–445. https://doi.org/10.1109/JPHOTOV.2012.2215842Zhou H, Hsu W-CC, Duan H-SS, Bob B, Yang W, Bin Song T-B, Hsu C-JJ, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838. https://doi.org/10.1039/c3ee41627eKhattak YH, Baig F, Toura H, Ullah S, Marí B, Beg S, Ullah H (2018) Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell. Curr Appl Phys 18:633–641. https://doi.org/10.1016/j.cap.2018.03.013Ge J, Roland PJ, Koirala P, Meng W, Young JL, Petersen R, Deutsch TG, Teeter G, Ellingson RJ, Collins RW, Yan Y (2017) Employing overlayers to improve the performance of Cu2BaSnS4 thin film based photoelectrochemical water reduction devices. Chem Mater 29:916–920. https://doi.org/10.1021/acs.chemmater.6b03347Ge J, Yan Y (2017) Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J Mater Chem C 5:6406–6419. https://doi.org/10.1039/C7TC01678FHong F, Lin W, Meng W, Yan Y (2016) Trigonal Cu2-II-Sn-VI4(II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys Chem Chem Phys 18:4828–4834. https://doi.org/10.1039/C5CP06977GTodorov T, Gunawan O, Guha S (2016) A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol Syst Des Eng 1:370–376. https://doi.org/10.1039/C6ME00041JBaig F, Khattak YH, Mari B, Ullah S, Ullah H, Ahmed S (2018) Efficiency enhancement of SnS solar cell using back surface field. In: 2018 1st international conference power, energy smart grid, IEEE, pp 1–5. https://doi.org/10.1109/icpesg.2018.8384496Baig F, Ullah H, Khattak YH, Mari Soucase B (2016) Numerical analysis of SnS Photovoltaic cells. In: 2016 international renewable sustainable energy conference, IEEE, pp 596–600. https://doi.org/10.1109/irsec.2016.7983899Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1Jabr RA, Hamad M, Mohanna YM (2007) Newton-Raphson solution of Poisson’s equation in a Pn diode. Int J Electr Eng Educ 44:23–33. https://doi.org/10.7227/IJEEE.44.1.3Hu CC (2010) Modern semiconductor devices for integrated circuitsKhattak YH (2019) Modeling of high power conversion efficiency thin film solar cells. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118802Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB (2017) Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 Absorber. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201606945Saha U, Alam MK (2018) Proposition of an environment friendly triple junction solar cell based on earth abundant CBTSSe/CZTS/ACZTSe materials. Phys Status Solidi Rapid Res Lett 12:1–5. https://doi.org/10.1002/pssr.201700335Zhu T, Huhn WP, Wessler GC, Shin D, Saparov B, Mitzi DB, Blum V (2017) I2-II-IV-VI4(I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): chalcogenides for Thin-Film Photovoltaics. Chem Mater 29:7868–7879. https://doi.org/10.1021/acs.chemmater.7b02638Ge J, Grice CR, Yan Y (2017) Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J Mater Chem A 5:2920–2928. https://doi.org/10.1039/C6TA08426EChatterjee S, Pal AJ (2016) Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C 120:1428–1437. https://doi.org/10.1021/acs.jpcc.5b11540Toghyani Rizi M, Shahrokh Abadi MH, Ghaneii M (2018) Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3buffer. Optik (Stuttg) 155:121–132. https://doi.org/10.1016/j.ijleo.2017.11.028Mihai R, Ninulescu V, Ph D (2017) Performance optimization of solar cells based on heterojunctions with Cu2O: numerical analysis. J Energy Eng 03:1–7. https://doi.org/10.1061/(ASCE)EY.1943-7897.000043
    corecore