6 research outputs found

    Seabed Mapping Using Shipboard Multibeam Acoustic Data for Assessing the Spatial Distribution of Ferromanganese Crusts on Seamounts in the Western Pacific

    No full text
    Cobalt-rich ferromanganese crusts (Fe–Mn crusts), potential economic resources for cobalt, nickel, platinum, and other rare metals, are distributed on the surface of seamounts, ridges, and plateaus. Distribution of Fe–Mn crust deposits and their geomorphological characteristics are prerequisites to selecting possible mining sites and to predicting the environmental impact of deep-sea mining activity. Here, we map the spatial distribution of Fe–Mn crust deposits on seamount summits and flanks in the Western Pacific using shipboard multibeam echo sounder (MBES) data and seafloor images from a deep-towed camera system (DCS) and evaluate the relationship between acoustic backscatter variations and the occurrence of Fe–Mn crusts. We find a positive correlation between high backscatter intensity, steep seabed slope gradients, and the occurrence of Fe–Mn crusts. However, our analysis was not effective to distinguish the spatial boundary between several seabed types that occur over small areas in mixed seabed zones, particularly where transition zones and discontinuous seabed types are present. Thus, we conclude that MBES data can be a valuable tool for constraining spatial distribution of Fe–Mn crust deposits over a large exploration area

    Discovery of Active Hydrothermal Vent Fields Along the Central Indian Ridge, 8–12°S

    No full text
    Abstract Four new hydrothermal vent fields were discovered on the slow spreading Central Indian Ridge (8–12°S; Segments 1–3), all located off‐axis on abyssal hill structures or Ocean Core Complexes (OCCs). Each site was characterized using seafloor observation (towed camera system), plume chemistry (Fe, Mn, and CH4; Conductivity, Temperature, and Depth sensor [CTD]/Miniature Autonomous Plume Recorder [MAPR]), and rock sampling (TVgrab/dredges). Different styles of venting on each segment reflect different geological settings, rock types, likely heat sources, and fluid pathways. The segment 1 field was located on the western flank of the axial valley at the base of OCC‐1‐1. High‐temperature venting was inferred from plume characteristics and extensive seafloor sulfide mineralization, but only diffuse venting was observed. This site appears to be a magmatic‐influenced basaltic‐hosted system despite its off‐axis location. Two low‐temperature diffusely venting sites were located on abyssal hills 6 and 9 km off‐axis on Segment 2. Plume particle, metal, and CH4 concentrations were all very low, suggesting dilution of hydrothermal fluids by intrusion of seawater into the highly permeable flank area fault zone. The “Onnuri Vent Field” (OVF), located at the summit of OCC‐3‐2, vented clear, low‐temperature fluids supporting abundant vent organisms (21 macrofaunal taxa). The plume particle signal was low to absent, but strong ORP anomalies correlated with high CH4 and low metal concentrations. Sulfide mineralization was present, which suggests both serpentinization and magmatic/lithospheric influence on fluid composition. The detachment fault is the likely pathway for hydrothermal fluid circulation at this off‐axis location. These new vent field discoveries, especially the OVF, contribute valuable information toward understanding Indian Ocean hydrothermal systems and their ecology/biogeography

    Multicomponent nanopatterns by directed block copolymer self-assembly

    No full text
    Complex nanopatterns integrating diverse nanocomponents are crucial requirements for advanced photonics and electronics. Currently, such multicomponent nanopatterns are principally created by colloidal nanoparticle assembly, where large-area processing of highly ordered nanostructures raises significant challenge. We present multicomponent nanopatterns enabled by block copolymer (BCP) self-assembly, which offers device oriented sub-10-nm scale nanopatterns with arbitrary large-area scalability. In this approach, BCP nanopatterns direct the nanoscale lateral ordering of the overlaid second level BCP nanopatterns to create the superimposed multicomponent nanopatterns incorporating nanowires and nanodots. This approach introduces diverse chemical composition of metallic elements including Au, Pt, Fe, Pd, and Co into sub-10-nm scale nanopatterns. As immediate applications of multicomponent nanopatterns, we demonstrate multilevel charge-trap memory device with Pt-Au binary nanodot pattern and synergistic plasmonic properties of Au nanowire-Pt nanodot pattern.close3
    corecore