29 research outputs found

    Helical Conformation of the SEVI Precursor Peptide PAP248-286, a Dramatic Enhancer of HIV Infectivity, Promotes Lipid Aggregation and Fusion

    Get PDF
    AbstractIn previous in vivo studies, amyloid fibers formed from a peptide ubiquitous in human seminal fluid (semen-derived enhancer of viral infection (SEVI)) were found to dramatically enhance the infectivity of the HIV virus (3–5 orders of magnitude by some measures). To complement those studies, we performed in vitro assays of PAP248-286, the most active precursor to SEVI, and other polycationic polymers to investigate the physical mechanisms by which the PAP248-286 promotes the interaction with lipid bilayers. At acidic (but not at neutral) pH, freshly dissolved PAP248-286 catalyzes the formation of large lipid flocculates in a variety of membrane compositions, which may be linked to the promotion of convective transport in the vaginal environment rather than transport by a random Brownian motion. Furthermore, PAP248-286 is itself fusiogenic and weakens the integrity of the membrane in such a way that may promote fusion by the HIV gp41 protein. An α-helical conformation of PAP248-286, lying parallel to the membrane surface, is implicated in promoting bridging interactions between membranes by the screening of the electrostatic repulsion that occurs when two membranes are brought into close contact. This suggests that nonspecific binding of monomeric or small oligomeric forms of SEVI in a helical conformation to lipid membranes may be an additional mechanism by which SEVI enhances the infectivity of the HIV virus

    Functional replacement of myostatin with GDF-11 in the germline of mice.

    Get PDF
    BACKGROUND: Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS: We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS: In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS: GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited

    Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway.

    Get PDF
    Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated

    Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A.

    Get PDF
    Myostatin (MSTN) is a transforming growth factor-β (TGF-β) family member that normally acts to limit muscle growth. The function of MSTN is partially redundant with that of another TGF-β family member, activin A. MSTN and activin A are capable of signaling through a complex of type II and type I receptors. Here, we investigated the roles of two type II receptors (ACVR2 and ACVR2B) and two type I receptors (ALK4 and ALK5) in the regulation of muscle mass by these ligands by genetically targeting these receptors either alone or in combination specifically in myofibers in mice. We show that targeting signaling in myofibers is sufficient to cause significant increases in muscle mass, showing that myofibers are the direct target for signaling by these ligands in the regulation of muscle growth. Moreover, we show that there is functional redundancy between the two type II receptors as well as between the two type I receptors and that all four type II/type I receptor combinations are utilized in vivo. Targeting signaling specifically in myofibers also led to reductions in overall body fat content and improved glucose metabolism in mice fed either regular chow or a high-fat diet, demonstrating that these metabolic effects are the result of enhanced muscling. We observed no effect, however, on either bone density or muscle regeneration in mice in which signaling was targeted in myofibers. The latter finding implies that MSTN likely signals to other cells, such as satellite cells, in addition to myofibers to regulate muscle homeostasis

    Parenting stress among caregivers of children with bipolar spectrum disorders

    Get PDF
    Caregivers of psychiatrically impaired children experience considerable parenting stress. However, no research has evaluated parenting stress within the context of pediatric bipolar spectrum disorders (BPSD). Thus, the aim of this investigation was to identify predictors and moderators of stress among caregivers in the Longitudinal Assessment of Manic Symptoms study. Participants included 640 children and their caregivers in the Longitudinal Assessment of Manic Symptoms cohort. Children had a mean age of 9.4 ± 1.9 years (68% male, 23% BPSD); parents had a mean age of 36.5 ± 8.3 years (84% mothers). Children with BPSD had more service utilization, psychiatric diagnoses, mood and anxiety symptoms, and functional impairment but fewer disruptive behavior disorders. Caregivers of children with BPSD were more likely than caregivers of children without BPSD to have a partner, elevated depressive symptoms, antisocial tendencies, and parenting stress (Cohen’s d = .49). For the whole sample, higher child IQ, mania, anxiety, disruptive behavior, and caregiver depression predicted increased parenting stress; maternal conduct disorder predicted lower stress. Child anxiety and disruptive behavior were associated with elevated caregiver stress only for non-BPSD children. Caregivers of children with BPSD experience significant burden and thus require specialized, family-focused interventions. As stress was also elevated, to a lesser degree, among depressed caregivers of children with higher IQ, mania, anxiety, and disruptive behavior, these families may need additional supports as well. Although parents with conduct/antisocial problems evidenced lower stress, these difficulties should be monitored. Thus, parenting stress should be evaluated and addressed in the treatment of childhood mental health problems, especially BPSD

    Cognitive flexibility and performance in children and adolescents with threshold and sub-threshold bipolar disorder

    Get PDF
    Greater understanding of cognitive function in children and adolescents with bipolar disorder (BD) is of critical importance to improve our ability to design targeted treatments to help with real-world impairment, including academic performance. We sought to evaluate cognitive performance among children with either BD type I, II, or “not otherwise specified” (NOS) participating in multi-site Course and Outcome of Bipolar Youth study compared to typically developing controls (TDC) without psycho-pathology. In particular, we sought to test the hypothesis that BD-I and BD-II youths with full threshold episodes of mania or hypomania would have cognitive deficits, including in reversal learning, vs. those BD-NOS participants with sub-threshold episodes and TDCs. N = 175 participants (BD-I = 81, BD-II = 11, BD-NOS = 28, TDC = 55) completed Cambridge Neuropsychological Automated Testing Battery (CANTAB) tasks. A priori analyses of the simple reversal stage of the CANTAB intra-/extra-dimensional shift task showed that aggregated BD-I/II participants required significantly more trials to complete the task than either BD-NOS participants with sub-syndromal manic/hypomanic symptoms or than TDCs. BD participants across sub-types had impairments in sustained attention and information processing for emotionally valenced words. Our results align with prior findings showing that BD-I/II youths with distinct episodes have specific alterations in reversal learning. More broadly, our study suggests that further work is necessary to see the interaction between neurocognitive performance and longitudinal illness course. Additional work is required to identify the neural underpinnings of these differences as targets for potential novel treatments, such as cognitive remediation

    The 24-month course of manic symptoms in children

    Get PDF
    The Longitudinal Assessment of Manic Symptoms (LAMS) study was designed to investigate phenomenology and establish predictors of functional outcomes in children with elevated manic symptoms. The purpose of this series of analyses was to determine whether the participants demonstrated different trajectories of parent-reported manic and biphasic symptoms over the first 24 months of follow-up and to describe the clinical characteristics of the trajectories

    Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    Get PDF
    Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC) culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS), trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS) are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture
    corecore