474 research outputs found

    Interaction of flying electromagnetic doughnut with nanostructures

    No full text
    We report on the electromagnetic properties of the single-cycle "flying doughnut" electromagnetic permutations in the context of their interactions with nanoscale objects, such as dielectric and plasmonic nanoparticles

    Interrogating nanoparticles with focused doughnuts

    No full text
    The propagation of electromagnetic radiation in free-space is described by the source-free Maxwells equations. In contrast to conventional solutions such as infinite-energy plane waves and Gaussian pulses, there exists a family of exact solutions which represent localised transmission of finite electromagnetic energy [1]. One such solution is known as the Focused Doughnut (FD) pulse a peculiar single-cycle electromagnetic perturbation with a unique toroidal field topology and 3-dimensional, polynomial energy localisation [2]. Here, for the first time we present a comprehensive study of the FD pulse: we investigate the propagation dynamics and interactions of these complex electromagnetic pulses with homogeneous and structured media.The FD pulse exhibits a number of intriguing properties. Its purely single-cycle nature results in an ultra-broadband frequency spectrum and a well defined spatial-chirp. In fact, the spatial dependence of the pulse is inseparable from its temporal dependence. In addition, the toroidal topology of the pulse gives rise to significant longitudinal field components at the pulse that hold potential for particle acceleration applications [2]. Although the FD pulse has remained a theoretical curiosity since its first prediction, successful experimental realisation could lead to its use in a variety of settings, such as microscopy, communications, directed energy transfer, spectroscopy, and particle trapping and acceleration. Further interest in the FD pulse stems from the burgeoning field of toroidal electrodynamics, owing to the topological similarities between the FD pulse and the near-field configuration of the toroidal dipole excitation [3].The intriguing light-matter interactions of the FD pulse are examined from several perspectives. We present a full evaluation of the transformations the FD pulse undergoes due to interactions with dielectric and metallic interfaces. This has revealed the unusual behaviour of both the TE and TM pulses under reflection, with respect to the reversal of the azimuthal and radial field components. Furthermore, the interactions of FDs with small dielectric and plasmonic particles are considered, where the broadband nature and complex field topology of the pulses is expected to play a significant role in mode excitation. Recent work has demonstrated broad modal excitation within the nanostructures and distinct differences between the interaction with TE and TM pulses. Possible experimental realisations of these complex electromagnetic perturbations resulting from the theoretical/computational treatment presented here will be discussed

    Offenders' Crime Narratives across Different Types of Crimes

    Get PDF
    The current study explores the roles offenders see themselves playing during an offence and their relationship to different crime types. One hundred and twenty incarcerated offenders indicated the narrative roles they acted out whilst committing a specific crime they remembered well. The data were subjected to Smallest Space Analysis (SSA) and four themes were identified: Hero, Professional, Revenger and Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). Further analysis showed that different subsets of crimes were more like to be associated with different narrative offence roles. Hero and Professional were found to be associated with property offences (theft, burglary and shoplifting), drug offences and robbery and Revenger and Victim were found to be associated with violence, sexual offences and murder. The theoretical implications for understanding crime on the basis of offenders' narrative roles as well as practical implications are discussed

    Generation of flying electromagnetic doughnuts via spatiotemporal conversion of transverse electromagnetic pulses

    No full text
    We introduce a new class of metamaterials that allow simultaneous spatial and temporal control of electromagnetic waveforms and present for the first time the generation of flying doughnuts, single-cycle pulses of toroidal topology

    Criminal narrative experience: relating emotions to offence narrative roles during crime commission

    Get PDF
    A neglected area of research within criminality has been that of the experience of the offence for the offender. The present study investigates the emotions and narrative roles that are experienced by an offender while committing a broad range of crimes and proposes a model of Criminal Narrative Experience (CNE). Hypotheses were derived from the Circumplex of Emotions (Russell, 1997), Frye (1957), Narrative Theory (McAdams, 1988) and its link with Investigative Psychology (Canter, 1994). The analysis was based on 120 cases. Convicted for a variety of crimes, incarcerated criminals were interviewed and the data were subjected to Smallest Space Analysis (SSA). Four themes of Criminal Narrative Experience (CNE) were identified: Elated Hero, Calm Professional, Distressed Revenger and Depressed Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). The theoretical implications for understanding crime on the basis of the Criminal Narrative Experience (CNE) as well as practical implications are discussed

    A new type of optical activity in a toroidal metamaterial

    No full text
    We demonstrate experimentally and numerically the first ever observation of optical activity in a chiral metamaterial that is underpinned by the exotic resonant combination of an electric quadrupole and the elusive toroidal dipole
    • …
    corecore