1,123 research outputs found

    Palliative Urinary Diversion in Adenocarcinoma of the Prostate

    Get PDF
    Ten patients with inoperable prostatic carcinoma, producing ureteral obstruction and azotemia, underwent palliative urinary diversion. Good quality survivals of two months to three years were obtained. These results compare favorably with the good results seer) In gynecologic neoplasm of the bladder, colon and breast. In selected cases of carcinoma of the prostate, palliative urinary diversion is indicated when the prospects exist for further benefit from chemotherapy or radiotherapy

    Can majority support save an endangered language? A case study of language attitudes in Guernsey

    Get PDF
    Many studies of minority language revitalisation focus on the attitudes and perceptions of minorities, but not on those of majority group members. This paper discusses the implications of these issues, and presents research into majority andf minority attitudes towards the endangered indigenous vernacular of Guernsey, Channel Islands. The research used a multi-method approach (questionnaire and interview) to obtain attitudinal data from a representative sample of the population that included politicians and civil servants (209 participants). The findings suggested a shift in language ideology away from the post-second world war ‘culture of modernisation’ and monolingual ideal, towards recognition of the value of a bi/trilingual linguistic heritage. Public opinion in Guernsey now seems to support the maintenance of the indigenous language variety, which has led to a degree of official support. The paper then discusses to what extent this ‘attitude shift’ is reflected in linguistic behaviour and in concrete language planning measures

    Mesons and nucleons from holographic QCD in a unified approach

    Full text link
    We investigate masses and coupling constants of mesons and nucleons within a hard wall model of holographic QCD in a unified approach. We first examine an appropriate form of fermionic solutions by restricting the mass coupling for the five dimensional bulk fermions and bosons. We then derive approximated analytic solutions for the nucleons and the corresponding masses in a small mass coupling region. In order to treat meson and nucleon properties on the same footing, we introduce the same infrared (IR) cut in such a way that the meson-nucleon coupling constants, i.e., g_{pi NN} and g_{rho NN} are uniquely determined. The first order approximation with respect to a dimensionless expansion parameter, which is valid in the small mass coupling region, explicitly shows difficulties to avoid the IR scale problem of the hard wall model. We discuss possible ways of circumventing these problems.Comment: 15 pages, No figure. Several typos have been remove

    Micro-Auger Electron Spectroscopy Studies of Chemical and Electronic Effects at GaN-Sapphire Interfaces

    Get PDF
    We have used cross-sectional micro-Auger electron spectroscopy (AES), coupled with micro-cathodoluminescence (CLS) spectroscopy, in a UHV scanning electron microscope to probe the chemical and related electronic features of hydride vapor phase epitaxy GaN/sapphire interfaces on a nanometer scale. AES images reveal dramatic evidence for micron-scale diffusion of O from Al2O3 into GaN. Conversely, plateau concentrations of N can extend microns into the sapphire, corresponding spatially to a 3.8 eV defect emission and Auger chemical shifts attributed to Al-N-O complexes. Interface Al Auger signals extending into GaN indicates AlGaN alloy formation, consistent with a blue-shifted CLS local interface emission. The widths of such interface transition regions range from ≪100 nm to ∼1 μm, depending on surface pretreatment and growth conditions. Secondary ion mass spectroscopy depth profiles confirm the elemental character and spatial extent of diffusion revealed by micro-AES, showing that cross-sectional AES is a useful approach to probe interdiffusion and electronic properties at buried interfaces

    Four-nucleon contact interactions from holographic QCD

    Full text link
    We calculate the low energy constants of four-nucleon interactions in an effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to obtain meson-nucleon interactions and then integrate out massive mesons to obtain the four-nucleon interactions in 4D. We end up with two low energy constants at the leading order and seven of them at the next leading order, which is consistent with the effective chiral Lagrangian. The values of the low energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page

    Vector Manifestation and Fate of Vector Mesons in Dense Matter

    Full text link
    We describe in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian matching to QCD of an effective field theory with hidden local symmetry at the chiral cutoff Λ\Lambda. We find that chiral symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a critical matter density ncn_c. We express the critical density in terms of QCD correlators in dense matter at the matching scale. In a manner completely analogous to what happens at the critical NfcN_f^c and at the critical temperature TcT^c, the vector meson mass is found to vanish (in the chiral limit) at chiral restoration. This result provides a support for Brown-Rho scaling predicted a decade ago.Comment: 14 pages, 2 figure

    Meson Exchange Effect on Color Superconductivity

    Get PDF
    We investigate the effects of pion and gluon exchanges on the formation of two-flavor color superconductivity at moderate density, μ<1GeV\mu <1 GeV. The chiral quark model proposed by Manohar and Georgi containing pions as well as gluons is employed to show that the pion exchange reduces substantially the value of the superconducting gap gotten with the gluon exchange only. It turns out that the pion exchanges produce a repulsion between quark-quark pair in a spin and isospin singlet state. We suggest that the phase consisiting of pions, gluons and quarks is one of the candidates of in-medium QCD phase at moderate density.Comment: 8 pages, 1 figure, minor correction

    Precision Determination of the Neutron Spin Structure Function g1n

    Full text link
    We report on a precision measurement of the neutron spin structure function g1ng^n_1 using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain ∫0.0140.7g1n(x)dx=−0.036±0.004(stat)±0.005(syst)\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst) at an average Q2=5(GeV/c)2Q^2=5 (GeV/c)^2. We find relatively large negative values for g1ng^n_1 at low xx. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral ∫01g1n(x)dx\int^1_0 g^n_1(x)dx, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let

    Measurement of the Proton and Deuteron Spin Structure Function g_1 in the Resonance Region

    Get PDF
    We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and Q2≃0.5Q^2\simeq 0.5 and Q2≃1.2Q^2\simeq 1.2 GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15NH3^{15}NH_3 and 15ND3^{15}ND_3 targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract Γ(Q2)≡∫01g1(x,Q2)dx\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.Comment: 7 pages, 2 figure
    • …
    corecore