738 research outputs found

    The long journey from the giant-monopole resonance to the nuclear-matter incompressibility

    Full text link
    Differences in the density dependence of the symmetry energy predicted by nonrelativistic and relativistic models are suggested, at least in part, as the culprit for the discrepancy in the values of the compression modulus of symmetric nuclear matter extracted from the energy of the giant monopole resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry energies than Skyrme interactions, consistently predict higher compression moduli than nonrelativistic approaches. Relativistic models with compression moduli in the physically acceptable range of K=200-300 MeV are used to compute the distribution of isoscalar monopole strength in 208Pb. When the symmetry energy is artificially softened in one of these models, in an attempt to simulate the symmetry energy of Skyrme interactions, a lower value for the compression modulus is indeed obtained. It is concluded that the proposed measurement of the neutron skin in 208Pb, aimed at constraining the density dependence of the symmetry energy and recently correlated to the structure of neutron stars, will also become instrumental in the determination of the compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure

    Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data

    Get PDF
    State of the art PRA methods, i.e. Dynamic PRA (DPRA) methodologies, largely employ system simulator codes to accurately model system dynamics. Typically, these system simulator codes (e.g., RELAP5 ) are coupled with other codes (e.g., ADAPT, RAVEN that monitor and control the simulation. The latter codes, in particular, introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, variable uncertainties) elements into the simulation. A typical DPRA analysis is performed by: 1. Sampling values of a set of parameters from the uncertainty space of interest 2. Simulating the system behavior for that specific set of parameter values 3. Analyzing the set of simulation runs 4. Visualizing the correlations between parameter values and simulation outcome Step 1 is typically performed by randomly sampling from a given distribution (i.e., Monte-Carlo) or selecting such parameter values as inputs from the user (i.e., Dynamic Event Tre

    Spin-Orbit Splitting in Non-Relativistic and Relativistic Self-Consistent Models

    Get PDF
    The splitting of single-particle energies between spin-orbit partners in nuclei is examined in the framework of different self-consistent approachs, non-relativistic as well as relativistic. Analytical expressions of spin-orbit potentials are given for various cases. Proton spin-orbit splittings are calculated along some isotopic chains (O, Ca, Sn) and they are compared with existing data. It is found that the isotopic dependence of the relativistic mean field predictions is similar to that of some Skyrme forces while the relativistic Hartree-Fock approach leads to a very different dependence due to the strong non-locality.Comment: 12 pages, RevTeX, 4 new figs.in .zip format, unchanged conclusions, Phys. ReV.

    Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications

    Get PDF
    This is the final version. Available from AIP Publishing via the DOI in this record. The combination of phase-change materials and integrated photonics has led to the development of new forms of all-optical devices, includingphotonic memories, arithmetic and logic processors, and synaptic and neuronal mimics. Such devices can be readily fabricated into photonicintegrated circuits, so potentially delivering large-scale all-optical arithmetic-logic units and neuromorphic processing chips. To facilitate inthe design and optimization of such large-scale systems, and to aid in the understanding of device and system performance, fast yet accuratecomputer models are needed. Here, we describe the development of a behavioral modeling tool that meets such requirements, being capableof essentially instantaneous modeling of the write, erase, and readout performance of various integrated phase-change photonic devices,including those for synaptic and neuronal mimics.Engineering and Physical Sciences Research Council (EPSRC)European Commissio

    A behavioural model for integrated phase-change photonics

    Get PDF
    This is the author accepted manuscript. The final version is available from the European Phase Change and Ovonics Symposium via the link in this recordThe use of phase-change materials in integrated photonics applications has enabled the development of new types of all-optical devices, including multilevel photonic memories, arithmetic and logic processors and synaptic and neuron mimics. In order to design, optimise and understand the performance of large-scale systems, fast and accurate material and device models are needed. Here we present a behavioural model for phase-change photonic devices that can simulate the write, erase and readout operations in timespans compatible with system level performance evaluation.European Union Horizon 2020Engineering and Physical Sciences Research Council (EPSRC

    Environmentally Tuning Asphalt Pavements Using Phase Change Materials

    Get PDF
    Environmental conditions are considered an important factor influencing asphalt pavement performance. The addition of modifiers, both to the asphalt binder and the asphalt mixture, has attracted considerable attention in potentially alleviating environmentally induced pavement performance issues. Although many solutions have been developed, and some deployed, many asphalt pavements continue to prematurely fail due to environmental loading. The research reported herein investigates the synthetization and characterization of biobased Phase Change Materials (PCMs) and inclusion of Microencapsulated PCM (ÎĽPCM) in asphalt binders and mixtures to help reduce environmental damage to asphalt pavements. In general, PCM substances are formulated to absorb and release thermal energy as the material liquify and solidify, depending on pavement temperature. As a result, PCMs can provide asphalt pavements with thermal energy storage capacities to reduce the impacts of drastic ambient temperature scenarios and minimize the appearance of critical temperatures within the pavement structure. By modifying asphalt pavement materials with PCMs, it may be possible to tune the pavement to the environment

    Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A

    Get PDF
    We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files

    Generator Coordinate Method Calculations for Ground and First Excited Collective States in 4^{4}He, 16^{16}O and 40^{40}Ca Nuclei

    Get PDF
    The main characteristics of the ground and, in particular, the first excited monopole state in the 4^{4}He, 16^{16}O and 40^{40}Ca nuclei are studied within the generator coordinate method using Skyrme-type effective forces and three construction potentials, namely the harmonic-oscillator, the square-well and Woods-Saxon potentials. Calculations of density distributions, radii, nucleon momentum distributions, natural orbitals, occupation numbers and depletions of the Fermi sea, as well as of pair density and momentum distributions are carried out. A comparison of these quantities for both ground and first excited monopole states with the available empirical data and with the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ
    • …
    corecore