659 research outputs found

    Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics

    Full text link
    A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presentedComment: 5 pages, Proceedings of the French-Japanese Symposium, September 2008. To be published in Int. J. of Mod. Phys.

    The long journey from the giant-monopole resonance to the nuclear-matter incompressibility

    Full text link
    Differences in the density dependence of the symmetry energy predicted by nonrelativistic and relativistic models are suggested, at least in part, as the culprit for the discrepancy in the values of the compression modulus of symmetric nuclear matter extracted from the energy of the giant monopole resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry energies than Skyrme interactions, consistently predict higher compression moduli than nonrelativistic approaches. Relativistic models with compression moduli in the physically acceptable range of K=200-300 MeV are used to compute the distribution of isoscalar monopole strength in 208Pb. When the symmetry energy is artificially softened in one of these models, in an attempt to simulate the symmetry energy of Skyrme interactions, a lower value for the compression modulus is indeed obtained. It is concluded that the proposed measurement of the neutron skin in 208Pb, aimed at constraining the density dependence of the symmetry energy and recently correlated to the structure of neutron stars, will also become instrumental in the determination of the compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure

    Asymptotic Normalization Coefficients for 13C+p->14N

    Get PDF
    The 13C(14N,13C)14N^{13}C(^{14}N,^{13}C)^{14}N proton exchange reaction has been measured at an incident energy of 162 MeV. Angular distributions were obtained for proton transfer to the ground and low lying excited states in 14N^{14}N. Elastic scattering of 14N^{14}N on 13C^{13}C also was measured out to the rainbow angle region in order to find reliable optical model potentials. Asymptotic normalization coefficients for the system 13C+p→14N^{13}C+p\to {}^{14}N have been found for the ground state and the excited states at 2.313, 3.948, 5.106 and 5.834 MeV in 14N^{14}N. These asymptotic normalization coefficients will be used in a determination of the S-factor for 7Be(p,γ)8B^{7}Be(p,\gamma)^{8}B at solar energies from a measurement of the proton transfer reaction 14N(7Be,8B)13C^{14}N(^{7}Be,^{8}B)^{13}C.Comment: 5 pages, 6 figure

    On Properties of the Isoscalar Giant Dipole Resonance

    Get PDF
    Main properties (strength function, energy-dependent transition density, branching ratios for direct nucleon decay) of the isoscalar giant dipole resonance in several medium-heavy mass spherical nuclei are described within a continuum-RPA approach, taking into account the smearing effect. All model parameters used in the calculations are taken from independent data. Calculation results are compared with available experimental data.Comment: 12 pages, 2 figure

    Tests of Transfer Reaction Determinations of Astrophysical S-Factors

    Get PDF
    The 16O(3He,d)17F{}^{16}O ({}^{3}He,d) {}^{17}F reaction has been used to determine asymptotic normalization coefficients for transitions to the ground and first excited states of 17F{}^{17}F. The coefficients provide the normalization for the tails of the overlap functions for 17F→16O+p{}^{17}F \to{}^{16}O + p and allow us to calculate the S-factors for 16O(p,γ)17F{}^{16}O (p,\gamma){}^{17}F at astrophysical energies. The calculated S-factors are compared to measurements and found to be in very good agreement. This provides the first test of this indirect method to determine astrophysical direct capture rates using transfer reactions. In addition, our results yield S(0) for capture to the ground and first excited states in 17F^{17}F, without the uncertainty associated with extrapolation from higher energies.Comment: 6 pages, 2 figure

    Exudative pharyngitis possibly due to Corynebacterium pseudodiphtheriticum, a new challenge in the differential diagnosis of diphtheria.

    Get PDF
    Corynebacterium pseudodiphtheriticum has rarely been reported to cause disease in humans, despite its common presence in the flora of the upper respiratory tract. We report here a case of exudative pharyngitis with pseudomembrane possibly caused by C. pseudodiphtheriticum in a 4-year-old girl. The case initially triggered clinical and laboratory suspicion of diphtheria. Because C. pseudodiphtheriticum can be easily confused with Corynebacterium diphtheriae in Gram stain, clarification of its role in the pathogenesis of exudative pharyngitis in otherwise healthy persons is of public health importance. Simple and rapid screening tests to differentiate C. pseudodiphtheriticum from C. diphtheriae should be performed to prevent unnecessary concern in the community and unnecessary outbreak control measures

    Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei

    Full text link
    The collective excitation phenomena in atomic nuclei are studied in two different formulations of the Random Phase Approximation (RPA): (i) RPA based on correlated realistic nucleon-nucleon interactions constructed within the Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA) derived from effective Lagrangians with density-dependent meson-exchange interactions. The former includes the dominant interaction-induced short-range central and tensor correlations by means of an unitary transformation. It is shown that UCOM-RPA correlations induced by collective nuclear vibrations recover a part of the residual long-range correlations that are not explicitly included in the UCOM Hartree-Fock ground state. Both RPA models are employed in studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei across the nuclide chart, with an emphasis on the sensitivity of its properties on the constraints for the range of the UCOM correlation functions. Within the Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov model, the occurrence of pronounced low-lying dipole excitations is predicted in nuclei towards the proton drip-line. From the analysis of the transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei, conference proceedings, "Frontiers in the Physics of Nucleus", St. Petersburg, 28. June-1. July, 200

    Conductance anomalies in quantum wires

    Full text link
    We study the conductance threshold of clean nearly straight quantum wires in the magnetic field. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h) are related to a singlet resonance and a triplet resonance, respectively, and survive to temperatures of a few degrees. With increasing in-plane magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.Comment: Quantum wire with planar geometry; in-plane magnetic fiel

    Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A

    Get PDF
    We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files

    Generator Coordinate Method Calculations for Ground and First Excited Collective States in 4^{4}He, 16^{16}O and 40^{40}Ca Nuclei

    Get PDF
    The main characteristics of the ground and, in particular, the first excited monopole state in the 4^{4}He, 16^{16}O and 40^{40}Ca nuclei are studied within the generator coordinate method using Skyrme-type effective forces and three construction potentials, namely the harmonic-oscillator, the square-well and Woods-Saxon potentials. Calculations of density distributions, radii, nucleon momentum distributions, natural orbitals, occupation numbers and depletions of the Fermi sea, as well as of pair density and momentum distributions are carried out. A comparison of these quantities for both ground and first excited monopole states with the available empirical data and with the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ
    • …
    corecore