3,429 research outputs found

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    An Overview of Biomaterials in Periodontology and Implant Dentistry

    Get PDF
    Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors) and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted

    Akt regulates the expression of MafK, synaptotagmin I, and syntenin-1, which play roles in neuronal function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt.</p> <p>Methods</p> <p>We performed suppression subtractive hybridization on two previously established PC12 sublines, one of which overexpresses the wild-type (WT) form and the other, the dominant-negative (DN) form of Akt. These sublines respond differently to NGF's neuronal differentiation effect.</p> <p>Results</p> <p>A variety of genes was identified and could be classified into several functional groups, one of which was developmental processes. Two genes involved in neuronal differentiation and function were found in this group. v-Maf musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) induces the neuronal differentiation of PC12 cells and immature telencephalon neurons, and synaptotagmin I (SytI) is essential for neurotransmitter release. Another gene, <it>syntenin-1 </it>(<it>Syn-1</it>) was also recognized in the same functional group into which <it>MafK </it>and <it>SytI </it>were classified. Syn-1 has been reported to promote the formation of membrane varicosities in neurons. Quantitative reverse transcription polymerase chain reaction analyses show that the transcript levels of these three genes were lower in PC12 (WT-Akt) cells than in parental PC12 and PC12 (DN-Akt) cells. Furthermore, treatment of PC12 (WT-Akt) cells with an Akt inhibitor resulted in the increase of the expression of these genes and the improvement of neurite outgrowth. These results indicate that dominant-negative or pharmacological inhibition of Akt increases the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes. Using lentiviral shRNA to knock down endogenous Syn-1 expression, we demonstrated that Syn-1 promotes an increase in the numbers of neurites and branches.</p> <p>Conclusions</p> <p>Taken together, these results indicate that Akt negatively regulates the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes that all participate in regulating neuronal integrity in some way or another.</p

    P3-194: The palliative effect of endobronchial brachytherapy for previously irradiated patients

    Get PDF

    Effects of dietary probiotics on the growth and feeding efficiency of red hybrid tilapia, Oreochromis sp., and subsequent resistance to Streptococcus agalactiae

    Get PDF
    An eight-week trial was performed to evaluate three commercial/prototype probiotics supplemented in red hybrid tilapia, Oreochromis sp. diets. Triplicate groups of tilapia were measured for growth performance, feeding efficiencies, and whole-body composition. After the feeding trial, duplicate groups of tilapia were assessed for their resistance to Streptococcus agalactiae over 23 days. Six diets were supplemented with 0.1% or 0.3% PB1 consisting of Bacillus subtilis, 0.1% or 0.3% PB2 consisting of B. licheniformis or 0.1% MPB consisting of Bacillus sp. and Pediococcus sp. Probiotics had no effect (p > 0.05) on growth or feeding efficiencies, although whole-body crude protein was significantly higher in the PB1 0.3% treatment. Tilapia in the probiotic treatments had a higher resistance to S. agalactiae and, with the exception of the PB2 0.1% diet, were all significantly higher than the control treatment. Although the tested probiotics were not growth promoters, dietary B. subtilis was the most effective prophylactic against pathogenic bacteria

    The dynamic development of germ cells during chicken embryogenesis

    Get PDF
    ArticlePoultry Science. 97(2): 650-657. (2018)journal articl
    corecore