185 research outputs found

    Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    Get PDF
    We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR)) can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch) was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder. Then, at a room temperature, the complete separation of the reduction product from the cathode basket was achieved by inverting it without damaging or deforming the basket. Finally, the emptied cathode basket obtained after the separation was reused for the second OR run by loading a fresh simulated oxide fuel. We also succeeded in the separation of the metallic product from the reused cathode basket for the second OR run

    Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Get PDF
    Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel

    Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway

    Get PDF
    Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes Nα-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N^α-terminal acetyl group

    UKIRT Widefield Infrared Survey for Fe+

    Get PDF
    The United Kingdom Infrared Telescope (UKIRT)Widefield Infrared Survey for Fe+ (UWIFE) is a 180 deg2 imaging survey of the first Galactic quadrant (7° < l < 62° |b| <1°.5) that uses a narrow-band filter centred on the [Fe II] 1.644-ĂŽÂŒm emission line. The [Fe II] 1.644-ĂŽÂŒm emission is a good tracer of dense, shock-excited gas, and the survey will probe violent environments around stars: star-forming regions, evolved stars, and supernova remnants, among others. The UWIFE survey is designed to complement the existing UKIRTW idefield Infrared Survey for H2 (UWISH2). The survey will also complement existing broad-band surveys. The observed images have a nominal 5Ï? detection limit of 18.7 mag for point sources, with a median seeing of 0.83 arcsec. For extended sources, we estimate a surface brightness limit of 8.1 Ã? 10-20 W m-2 arcsec-2. In this paper, we present an overview and some preliminary results of this survey. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
    • 

    corecore