4,666 research outputs found

    Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks

    Get PDF
    Changes in Arctic sea ice affect atmospheric circulation, ocean current, and polar ecosystems. There have been unprecedented decreases in the amount of Arctic sea ice due to global warming. In this study, a novel 1-month sea ice concentration (SIC) prediction model is proposed, with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). This monthly SIC prediction model based on CNNs is shown to perform better predictions (mean absolute error - MAE - of 2.28 %, anomaly correlation coefficient - ACC - of 0.98, root-mean-square error - RMSE - of 5.76 %, normalized RMSE - nRMSE - of 16.15 %, and NSE - Nash-Sutcliffe efficiency - of 0.97) than a random-forest-based (RF-based) model (MAE of 2.45 %, ACC of 0.98, RMSE of 6.61 %, nRMSE of 18.64 %, and NSE of 0.96) and the persistence model based on the monthly trend (MAE of 4.31 %, ACC of 0.95, RMSE of 10.54 %, nRMSE of 29.17 %, and NSE of 0.89) through hindcast validations. The spatio-temporal analysis also confirmed the superiority of the CNN model. The CNN model showed good SIC prediction results in extreme cases that recorded unforeseen sea ice plummets in 2007 and 2012 with RMSEs of less than 5.0 %. This study also examined the importance of the input variables through a sensitivity analysis. In both the CNN and RF models, the variables of past SICs were identified as the most sensitive factor in predicting SICs. For both models, the SIC-related variables generally contributed more to predict SICs over ice-covered areas, while other meteorological and oceanographic variables were more sensitive to the prediction of SICs in marginal ice zones. The proposed 1-month SIC prediction model provides valuable information which can be used in various applications, such as Arctic shipping-route planning, management of the fishing industry, and long-term sea ice forecasting and dynamics

    Suksesi Areal Bekas Ladang Berpindah Di Desa Sungai Buluh, Kalteng

    Get PDF
    ABSTRACT Degraded forest land in Indonesia was estimated at about several ten-millions ha. According to FAO report in 1990, about 23 millions ha were bushy vegetation and 20 millions ha were bare/critical lands and alang-alang formations. It is, therefore, necessary to study ecological changes of these land in order to make proper land management and forest management. This paper employs statistical ecology to analyze ecological changes in degraded forest land caused by slash-and-burn practices. The results show that species diversity, based on species richness and evenness, is increasing and becoming more stable from time to time. Species diversity is represented by the effective number of species present in a sample. Explicitly, it consisted of three effective numbers of species in the sample: NO (thenumber of all species), Ni (the number of abundant species) and N2 (the numlier of very abundant of species). The relationship among the three effective numbers of species give good information about the changes of species evenness in the community. The rarefraction method is a useful technique for not only comparing species evenness but also defining the number of species in different sample size. It is argued that more advanced studies including ecological, economical analyses about utilizing the degraded forest land are needed

    Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR) to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2) cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF) is a fruit of <it>Cornus officinalis </it>Sieb. Et. Zucc. (Cornaceae) and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmatic effects of CF and their underlying mechanism, we examined the influence of CF on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma.</p> <p>Methods</p> <p>In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) by intraperitoneal (i.p.), intratracheal (i.t.) injections and intranasal (i.n.) inhalation of OVA. We investigated the effect of CF on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, and OVA-specific immunoglobulin E (IgE) production.</p> <p>Results</p> <p>The CF-treated groups showed suppressed eosinophil infiltration, allergic airway inflammation, and AHR via reduced production of interleuin (IL) -5, IL-13, and OVA-specific IgE.</p> <p>Conclusions</p> <p>Our data suggest that the therapeutic effects of CF in asthma are mediated by reduced production of Th2 cytokines (IL-5), eotaxin, and OVA-specific IgE and reduced eosinophil infiltration.</p

    Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma

    Get PDF
    Background and Objective. The features of asthma are airway inflammation, reversible airflow obstruction, and an increased sensitivity to bronchoconstricting agents, termed airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. To investigate the antiasthmatic potential of hesperidin as well as the underlying mechanism involved, we studied the inhibitory effect and anti-inflammatory effect of hesperidin (HPN) on the production of Th2 cytokines, eotaxin, IL-17, -OVA-specific IgE in vivo asthma model mice. Methods. In this paper, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of HPN on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA-specific IgE production in a mouse model of asthma. Results. In BALB/c mice, we found that HPN-treated groups had suppressed eosinophil infiltration, allergic airway inflammation, and AHR, and these occurred by suppressing the production of IL-5, IL-17, and OVA-specific IgE. Conclusions. Our data suggest that the therapeutic mechanism by which HPN effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production, and eosinophil infiltration via inhibition of GATA-3 transcription factor

    Hydrogen Cyanide Produced by Pseudomonas chlororaphis O6 Exhibits Nematicidal Activity against Meloidogyne hapla

    Get PDF
    Root-knot nematodes (Meloidogyne spp.) are parasites that attack many field crops and orchard trees, and affect both the quantity and quality of the products. A root-colonizing bacterium, Pseudomonas chlororaphis O6, possesses beneficial traits including strong nematicidal activity. To determine the molecular mechanisms involved in the nematicidal activity of P. chlororaphis O6, we constructed two mutants; one lacking hydrogen cyanide production, and a second lacking an insecticidal toxin, FitD. Root drenching with wild-type P. chlororaphis O6 cells caused juvenile mortality in vitro and in planta. Efficacy was not altered in the fitD mutant compared to the wild-type but was reduced in both bioassays for the mutant lacking hydrogen cyanide production. The reduced number of galls on tomato plants caused by the wild-type strain was comparable to that of a standard chemical nematicide. These findings suggest that hydrogen cyanide-producing root colonizers, such as P. chlororaphis O6, could be formulated as “green” nematicides that are compatible with many crops and offer agricultural sustainability
    corecore