4,612 research outputs found

    Preparation and characterization of sol-gel derived titania-silica thin films

    Get PDF

    Plantsā€™ responses to drought and shade environments

    Get PDF
    Water and light are the most important environements for plantsā€™ growth. These environemts are criticalĀ factors needed not only for the survival of plants but also their production. When plants are exposed toĀ drought condition, they change in their anatomical, physiological and biochemical properties. DroughtĀ affects plants wildly from their cell structure to growth. It causes higher plastoglobuli, lower starchĀ grain, distortion of thylakoids, disrupted grana and swelling of chloroplast. Plants grown underĀ enhanced light, have increased palisade parenchyma, thicker leaf, higher biomass, increasedĀ photosynthesis, lower contents of chlorophyll, carotenoid and nitrogen.Keywords: Drought, plant, shade, wate

    Ultrafast Electron Microscopy Integrated with a Direct Electron Detection Camera

    Get PDF
    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.ope

    Overexpression of Cancer-Associated Genes via Epigenetic Derepression Mechanisms in Gynecologic Cancer

    Get PDF
    Like other cancers, most gynecologic cancers are caused by aberrant expression of cancer-related genes. Epigenetics is one of the most important gene expression mechanisms, which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells when compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study of inheritable changes in gene expression that do not alter DNA sequence is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, while microRNAs and alternative splicing have recently been identified as important regulators of epigenetic mechanisms. These mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and all epigenetic mechanisms to be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes expression. But recently, it is arising that some oncogenes or cancer-promoting genes (CPGs) are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA and histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms actively interact with each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and accumulation of these abnormal epigenetic changes makes cancer more aggressive and treatment resistance. This review discusses epigenetic mechanisms involved in the overexpression of oncogenes or CPGs via epigenetic derepression in gynecologic cancers. Therefore, improved understanding of these epigenetic mechanisms will provide new targets for gynecologic cancer treatment

    Enhanced Search Method for Ontology Classification

    Get PDF
    The web ontology language (OWL) has become a W3C recommendation to publish and share ontologies on the semantic web. In order to infer implicit information (classification, satisfiability and realization) of OWL ontology, a number of OWL reasoners have been introduced. Ontology classification is to compute a partial ordering or hierarchy of named concepts in the ontology using the subsumption testing. Most of the reasoners use both top-down and bottom-up searches using subsumption testing for ontology classification. As subsumption testing is costly, it is important to ensure that the classification process uses the smallest number of tests. In this paper, we propose an enhanced method of optimizing the ontology classification process of ontology reasoning. Our work focuses on two key aspects: The first and foremost, we describe classical methods for ontology classification. Next, we present description of the enhanced method of optimizing the ontology classification and the detailed algorithm. We evaluate the effect of the enhanced method on four different types of test ontology. The enhanced search method shows 30% performance improvement as compared with the classical method according to the result of the experiment
    • ā€¦
    corecore