6,059 research outputs found

    Developing research data management services at QUT

    Get PDF
    QUT Library and the High Performance Computing and Research Support (HPC) Team have been collaborating on developing and delivering a range of research support services, including those designed to assist researchers to manage their data. QUT’s Management of Research Data policy has been available since 2010 and is complemented by the Data Management Guidelines and Checklist. QUT has partnered with the Australian Research Data Service (ANDS) on a number of projects including Seeding the Commons, Metadata Hub (with Griffith University) and the Data Capture program. The HPC Team has also been developing the QUT Research Data Repository based on the Architecta Mediaflux system and have run several pilots with faculties. Library and HPC staff have been trained in the principles of research data management and are providing a range of research data management seminars and workshops for researchers and HDR students

    Building eResearch Services, Capabilities and Capacity

    Get PDF
    The Queensland University of Technology (QUT) is known for several flagship eResearch centres. It also has a number of mature, centralised research support services that address a several of areas of eResearch. The university has openly stated its aspiration to be an institution with a strongly embedded eResearch capability and to this end it has expressed the desire to establish a university-wide eResearch support service. However, articulating this desire is much easier than realising it. During 2008 QUT undertook a major review into eResearch that made recommendations on the development of university-wide eResearch support service and the building of eResearch capabilities and capacity throughout the university. The results of this review were reported last year at this conference. In 2009, QUT is progressing a second, follow-on project – Building eResearch Support Capability and Capacity. It has been designed to build upon existing strengths in HPC, repositories, data management, and the delivery of integrated skills for eresearch. The purpose of this presentation is to give an update on QUT’s journey, one year on from its first major report into eResearch. It will outline how the university is approaching this challenge, the current work being carried out and the strategies being employed. We will also discuss the lessons learned

    Robust Tensioned Kevlar Suspension Design

    Get PDF
    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar

    Leadership Training for Oral Health Professionals: A Call to Action

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153632/1/jddj002203372012762tb05245x.pd

    Synthesis, Structure, and Reactivity of Zirconium and Hafnium Imido Metalloporphyrins

    Get PDF
    The zirconium and hafnium porphyrin imido complexes (TTP)MNAriPr [TTP = meso-tetra-p-tolylporphyrinato dianion, M = Zr (1), Hf (2), AriPr = 2,6-diisopropylphenyl] were synthesized from (TTP)MCl2 and 2 equiv of LiNHAriPr. The zirconium imido complex, (TTP)ZrNAriPr, was also obtained from the preformed imido complex Zr(NAriPr)Cl2(THF)2 and (TTP)Li2(THF)2. Treatment of (TTP)HfCl2 with excess LiNH(p-MeC6H4) resulted in the formation of a bis(amido) complex, (TTP)Hf(NH-p-MeC6H4)2 (3), instead of an imido complex. In the presence of excess aniline, 2 formed an equilibrium mixture of bis(amido) compounds, (TTP)Hf(NHPh)(NHAriPr) and (TTP)Hf(NHPh)2. The nucleophilic character of the imido moiety is exhibited by its reaction with tBuNCO, producing isolable N,O-bound ureato metallacycles. The kinetic product obtained with zirconium, (TTP)Zr(η2-NAriPrC(NtBu)O) (4a), isomerized to (TTP)Zr(η2-NtBuC(NAriPr)O) (4b) in solution. Upon being heated to 80 °C, 4a produced the carbodiimide AriPrNCNtBu and a transient Zr(IV) oxo complex. The analogous hafnium complex (TTP)Hf(η2-NAriPrC(NtBu)O) (5a) did not eject the carbodiimide upon heating to 110 °C but isomerized to (TTP)Hf(η2-NtBuC(NAriPr)O) (5b). To support the formulation of 4a and 5a as N,O bound, the complex (TTP)Hf(η2-NAriPrC(NAriPr)O) (6) was studied by variable-temperature NMR spectroscopy. The corresponding thio- and selenoureato metallacycles were not isolable in the reaction between 1 and 2 with tBuNCS and tBuNCSe. Concomitant formation of the metallacycle with decomposition to the carbodiimide, AriPrNCNtBu, reflects the lower C−Ch bond strength in the proposed N,Ch-bound metallacycles. Treatment of 2 with 1,3-diisopropylcarbodiimide resulted in the η2-guanidino complex (TTP)Hf(η2-NAriPrC(NiPr)NiPr) (7a), which isomerized to the less sterically crowded isomer (TTP)Hf(η2-NiPrC(NAriPr)NiPr) (7b). Complexes 1, 2, 4a, 4b, and7a were characterized by X-ray crystallography. The monomeric terminal imido compounds, 1and 2, are isomorphous:  M−Nimido distances of 1.863(2) Å (Zr) and 1.859(2) Å (Hf); M−Nimido−C angles of 172.5(2)° (Zr) and 173.4(2)° (Hf). The structures of the ureato complexes 4aand 4b and the guanidino complex 7a exhibit typical alkoxido and amido bond distances (Zr−N = 2.1096(13) Å (4a), 2.137(3) Å (4b); Zr−O = 2.0677(12) Å (4a), 2.066(3) Å (4b); Hf−N = 2.087(2) Å, 2.151(2) Å (7a))

    Addition and Metathesis Reactions of Zirconium and Hafnium Imido Complexes

    Get PDF
    The zirconium and hafnium imido metalloporphyrin complexes (TTP)MNAriPr (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion; M = Zr (1), Hf; AriPr = 2,6-diisopropylphenyl) were used to mediate addition reactions of carbonyl species and metathesis of nitroso compounds. The imido complexes react in a stepwise manner in the presence of 2 equiv of pinacolone to form the enediolate products (TTP)M[OC(tBu)CHC(tBu)(Me)O] (M = Zr (2), Hf (3)), with elimination of H2NAriPr. The bis(μ-oxo) complex [(TTP)ZrO]2 (4) is formed upon reaction of (TTP)ZrNAriPr with PhNO. Treatment of compound 4 with water or treatment of compound 2 with acetone produced the (μ-oxo)bis(μ-hydroxo)-bridged dimer [(TTP)Zr]2(μ-O)(μ-OH)2 (5). Compounds 2, 4, and 5 were structurally characterized by single-crystal X-ray diffraction
    corecore