1,018 research outputs found

    Realizing Physical Approximation of the Partial Transpose

    Full text link
    The partial transpose by which a subsystem's quantum state is solely transposed is of unique importance in quantum information processing from both fundamental and practical point of view. In this work, we present a practical scheme to realize a physical approximation to the partial transpose using local measurements on individual quantum systems and classical communication. We then report its linear optical realization and show that the scheme works with no dependence on local basis of given quantum states. A proof-of-principle demonstration of entanglement detection using the physical approximation of the partial transpose is also reported.Comment: 5 pages with appendix, 3 figure

    Experimental Implementation of the Universal Transpose Operation

    Full text link
    The universal transpose of quantum states is an anti-unitary transformation that is not allowed in quantum theory. In this work, we investigate approximating the universal transpose of quantum states of two-level systems (qubits) using the method known as the structural physical approximation to positive maps. We also report its experimental implementation in linear optics. The scheme is optimal in that the maximal fidelity is attained and also practical as measurement and preparation of quantum states that are experimentally feasible within current technologies are solely applied.Comment: 4 pages, 4 figure

    Imaging findings for intravascular large B-cell lymphoma of the liver

    Get PDF
    Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of extranodal diffuse large B-cell lymphoma that most commonly involves the central nervous system and skin. To our knowledge, no state-of-the art imaging findings have been reported for hepatic IVLBCL in the English literature. We report the first case of hepatic involvement of IVLBCL along with a literature review

    Sex-specific expression of CTNNB1 in the gonadal morphogenesis of the chicken

    Get PDF
    BACKGROUND: Beta-catenin (CTNNB1), as a key transcriptional regulator in the WNT signal transduction cascade, plays a pivotal role in multiple biological functions such as embryonic development and homeostasis in adults. Although it has been suggested that CTNNB1 is required for gonad development and maintenance of ovarian function in mice, little is known about the expression and functional role of CTNNB1 in gonadal development and differentiation in the chicken reproductive system. METHODS: To examine sex-specific, cell-specific and temporal expression of CTNNB1 mRNA and protein during gonadal development to maturation of reproductive organs, we collected left and right gonads apart from mesonephric kidney of chicken embryos on embryonic day (E) 6, E9, E14, E18, as well as testes, oviduct and ovaries from 12-week-old and adult chickens and performed quantitative PCR, in situ hybridization, and immunohistochemical analyses. In addition, localization of Sertoli cell markers such as anti-Müllerian hormone (AMH), estrogen receptor alpha (ESR1), cyclin D1 (CCND1) and N-cadherin (CDH2) during testicular development was evaluated. RESULTS: Results of the present study showed that CTNNB1 mRNA and protein are expressed predominantly in the seminiferous cords on E6 to E14 in the male embryonic gonad, and are mainly localized to the medullary region of female embryonic gonads from E6 to E9. In addition, CTNNB1 mRNA and protein are abundant in the Sertoli cells in the testes and expressed predominantly in luminal epithelial cells of the oviduct, but not in the ovaries from 12-week-old and adult chickens. Concomitant with CTNNB1, AMH, ESR1, CCND1 and CDH2 were detected predominantly in the seminiferous cord of the medullary region of male gonads at E9 (after sex determination) and then maintained or decreased until hatching. Interestingly, AMH, ESR1, CCND1 and CDH2 were located in seminiferous tubules of the testes from 12-weeks-old chickens and ESR1, CCND1 and CDH2 were expressed predominantly in the Sertoli cells within seminiferous tubules of adult testes. CONCLUSIONS: Collectively, these results revealed that CTNNB1 is present in gonads of both sexes during embryonic development and it may play essential roles in differentiation of Sertoli cells during formation of seminiferous tubules during development of the testes

    Mentides a les xarxes : ens ho empassem tot, a internet?

    Get PDF
    The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels

    MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unclear etiology. This study was conducted to identify critical factors involved in the synovial hyperplasia in RA pathology. We applied cDNA microarray analysis to profile the gene expressions of RA fibroblast-like synoviocytes (FLSs) from patients with RA. We found that the MLN51 (metastatic lymph node 51) gene, identified in breast cancer, is remarkably upregulated in the hyperactive RA FLSs. However, growth-retarded RA FLSs passaged in vitro expressed small quantities of MLN51. MLN51 expression was significantly enhanced in the FLSs when the growth-retarded FLSs were treated with granulocyte – macrophage colony-stimulating factor (GM-CSF) or synovial fluid (SF). Anti-GM-CSF neutralizing antibody blocked the MLN51 expression even though the FLSs were cultured in the presence of SF. In contrast, GM-CSF in SFs existed at a significant level in the patients with RA (n = 6), in comparison with the other inflammatory cytokines, IL-1β and TNF-α. Most RA FLSs at passage 10 or more recovered from their growth retardation when cultured in the presence of SF. The SF-mediated growth recovery was markedly impaired by anti-GM-CSF antibody. Growth-retarded RA FLSs recovered their proliferative capacity after treatment with GM-CSF in a dose-dependent manner. However, MLN51 knock-down by siRNA completely blocked the GM-CSF/SF-mediated proliferation of RA FLSs. Taken together, our results imply that MLN51, induced by GM-CSF, is important in the proliferation of RA FLSs in the pathogenesis of RA
    corecore