5,130 research outputs found

    Comments on Secrecy and the Supreme Court

    Get PDF

    Quantum Goos-H\"{a}nchen shift and tunneling transmission at a curved step potential

    Full text link
    We study the quantum Goos-H\"{a}nchen (GH) shift and the tunneling transmission at a curved step potential by investigating the time evolution of a wave packet. An initial wave packet is expanded in terms of the eigenmodes of a circular step potential. Its time evolution is then given by the interference of their simple eigenmode oscillations. We show that the GH shift along the step boundary can be explained by the energy-dependent phase loss upon reflection, which is defined by modifying the one-dimensional (1D) effective potential derived from the 2D circular system. We also demonstrate that the tunneling transmission of the wave packet is characterized by a free-space image distant from the boundary. The tunneling transmission exhibits a rather wide angle divergence and the direction of maximum tunneling is slightly rotated from the tangent at the incident point, which is consistent with the time delay of the tunneling wave packet computed in the 1D modified effective potential

    Shadowing the rotating annulus. Part I: Measuring candidate trajectory shadowing times

    Get PDF
    An intuitively necessary requirement of models used to provide forecasts of a system's future is the existence of shadowing trajectories that are consistent with past observations of the system: given a system-model pair, do model trajectories exist that stay reasonably close to a sequence of observations of the system? Techniques for finding such trajectories are well-understood in low-dimensional systems, but there is significant interest in their application to high-dimensional weather and climate models. We build on work by Smith et al. [2010, Phys. Lett. A, 374, 2618-2623] and develop a method for measuring the time that individual "candidate" trajectories of high-dimensional models shadow observations, using a model of the thermally-driven rotating annulus in the perfect model scenario. Models of the annulus are intermediate in complexity between low-dimensional systems and global atmospheric models. We demonstrate our method by measuring shadowing times against artificially-generated observations for candidate trajectories beginning a fixed distance from truth in one of the annulus' chaotic flow regimes. The distribution of candidate shadowing times we calculated using our method corresponds closely to (1) the range of times over which the trajectories visually diverge from the observations and (2) the divergence time using a simple metric based on the distance between model trajectory and observations. An empirical relationship between the expected candidate shadowing times and the initial distance from truth confirms that the method behaves reasonably as parameters are varied.Comment: This paper was submitted to Physica D in 2010, but, after review, was not accepted. We no longer have the time or resources to work on this topic, but would like this record of our work to be available for others to read, cite, and follow up. 19 pages, 9 figure

    Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment.

    Get PDF
    Coastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were resin-embedded and analysed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ~60% in the top centimetre to 9.4%-22.4% between 2 and 10 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to putative sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.R24 GM137200 - NIGMS NIH HHShttps://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.1566

    Revealing the intensity of turbulent energy transfer in planetary atmospheres

    Get PDF
    Images of the giant planets Jupiter and Saturn show highly turbulent storms and swirling Q23 clouds that reflect the intensity of turbulence in their atmospheres. Quantifying planetary turbulence is inaccessible to conventional tools, however, since they require large quantities of spatially and temporally resolved data. Here we show, using experiments, observations, and simulations, that potential vorticity (PV) is a straightforward and universal diagnostic that can be used to estimate turbulent energy transfer in a stably stratified atmosphere. We use the conservation of PV to define a length scale, LM, representing a typical distance over which PV is mixed by planetary turbulence. LM increases as the turbulent intensity increases and can be estimated from any latitudinal PV profile. Using this principle, we estimate LM within Jupiter's and Saturn's tropospheres, showing for the first time that turbulent energy transfer in Saturn's atmosphere is four times less intense than Jupiter'

    A Receptor-based Switch that Regulates Anthrax Toxin Pore Formation

    Get PDF
    Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells
    corecore