2,221 research outputs found

    City Planning and Restrictions on the Use of Property

    Get PDF

    Industrial Courts with Special Reference to the Kansas Experiment

    Get PDF

    Industrial Courts

    Get PDF

    Parameter Conditions for Global Stability of FAST TCP

    Full text link

    Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Full text link
    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.Comment: drastically revised with conclusion change, reference added, version to appear in JCA

    All-solid-state VUV frequency comb at 160 nm using high-harmonic generation in nonlinear femtosecond enhancement cavity

    Get PDF
    © 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.We realized a solid-state-based vacuum ultraviolet frequency comb by harmonics generation in an external enhancement cavity. Optical conversions were so far reported by only using gaseous media. We present a theory that allows the most suited solid generation medium to be selected for specific target harmonics by adapting the material’s bandgap. We experimentally use a thin AlN film grown on a sapphire substrate to realize a compact frequency comb high-harmonic source in the Deep Ultraviolet (DUV)/Vacuum Ultraviolet/Deep Ultraviolet (VUV) spectral range. By extending our earlier VUV source [Opt. Express 26, 21900 (2018)] with the enhancement cavity, a sub-Watt level Ti:sapphire femtosecond frequency comb is enhanced to 24 W stored average power, its 3rd, 5th, and 7th harmonics are generated, and the targeted 5th harmonic’s power at 160 nm increased by two orders of magnitude. The emerging nonlinear effects in the solid medium, together with suitable intra-cavity dispersion management, support optimal enhancement and stable locking. To demonstrate the realized frequency comb’s spectroscopic ability, we report on the beat measurement between the 3rd harmonic beam and a 266 nm CW laser reaching about 1 MHz accuracy.Peer ReviewedPostprint (published version

    Juvenile root traits show limited correlation with grain yield, yield components and grain mineral composition traits in Indian wheat under hostile soils

    Get PDF
    Correlations between juvenile wheat root traits, and grain yield and yield component traits under optimal field conditions have previously been reported in some conditions. The aim of this study was to test the hypothesis that juvenile wheat root traits correlate with yield, yield components and grain mineral composition traits under a range of soil environments in India. A diverse panel of 36 Indian wheat genotypes were grown for ten days in ‘pouch and wick’ high-throughput phenotyping (HTP) system (20 replicates). Correlations between juvenile root architecture traits, including primary and lateral root length, and grain yield, yield components and grain mineral composition traits were determined, using field data from previously published experiments at six sites in India. Only a limited number of juvenile root traits correlated with grain yield (GYD), yield components, and grain mineral composition traits. A narrow root angle, potentially representing a ‘steep’ phenotype, was associated with increased GYD and harvest index (HI) averaged across sites and years. Length related root traits were not correlated with GYD or HI at most sites, however, the total length of lateral roots and lateral root number correlated with GYD at a sodic site of pH 9.5. The total length of lateral roots (TLLR) correlated with grain zinc (Zn) concentration at one site. A wider root angle, representing a shallow root system, correlated with grain iron (Fe) concentration at most sites. The total length of all roots (TLAR) and total length of primary roots (TLPR) correlated with grain S concentration at most sites. Narrow root angle in juvenile plants could be a useful proxy trait for screening germplasm for improved grain yield. Lateral root and shallow root traits could potentially be used to improve grain mineral concentrations. The use of juvenile root traits should be explored further in wheat breeding for diverse environments
    • …
    corecore