8,638 research outputs found
Simulation, modelling and development of the metris RCA
In partnership with Metris UK we discuss the utilisation of modelling and simulation methods in the development of a revolutionary 7-axis Robot CMM Arm (RCA). An offline virtual model is described, facilitating pre-emptive collision avoidance and assessment of optimal placement of the RCA relative to scan specimens. Workspace accessibility of the RCA is examined under a range of geometrical assumptions and we discuss the effects of arbitrary offsets resulting from manufacturing tolerances. Degeneracy is identified in the number of ways a given pose may be attained and it is demonstrated how a simplified model may be exploited to solve the inverse kinematics problem of finding the âcorrectâ set of joint angles. We demonstrate how the seventh axis may be utilised to avoid obstacles or otherwise awkward poses, giving the unit greater dexterity than traditional CMMs. The results of finite element analysis and static force modelling on the RCA are presented which provide an estimate of the forces exerted on the internal measurement arm in a range of poses
Characteristics, accuracy and reverification of robotised articulated arm CMMs
VDI article 2617 specifies characteristics to describe the accuracy of articulated arm coordinate measuring machines (AACMMs) and outlines procedures for checking them. However the VDI prescription was written with a former generation of machines in mind: manual arms exploiting traditional touch probe technologies. Recent advances in metrology have given rise to noncontact laser scanning tools and robotic automation of articulated arms â technologies which are not adequately characterised using the VDI specification. In this paper we examine the âguidelinesâ presented in VDI 2617, finding many of them to be ambiguous and open to interpretation, with some tests appearing even to be optional. The engineer is left significant flexibility in the execution of the test procedures and the manufacturer is free to specify many of the test parameters. Such flexibility renders the VDI tests of limited value and the results can be misleading. We illustrate, with examples using the Nikon RCA, how a liberal interpretation of the VDI guidelines can significantly improve accuracy characterisation and suggest ways in which to mitigate this problem.
We propose a series of stringent tests and revised definitions, in the same vein as VDI 2617 and similar US standards, to clarify the accuracy characterisation process. The revised methodology includes modified acceptance and reverification tests which aim to accommodate emerging technologies, laser scanning devices in particular, while maintaining the spirit of the existing and established standards. We seek to supply robust re-definitions for the accepted terms âzero pointâ and âuseful arm lengthâ, pre-supposing nothing about the geometry of the measuring device.
We also identify a source of error unique to robotised AACMMs employing laser scanners â the forward-reverse pass error. We show how eliminating this error significantly improves the repeatability of a device and propose a novel approach to the testing of probing error based on statistical uncertainty
Recommended from our members
Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA.
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron-like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis
Performance and structure of single-mode bosonic codes
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit
in an oscillator has recently been followed by cat- and binomial-code
proposals. Numerically optimized codes have also been proposed, and we
introduce new codes of this type here. These codes have yet to be compared
using the same error model; we provide such a comparison by determining the
entanglement fidelity of all codes with respect to the bosonic pure-loss
channel (i.e., photon loss) after the optimal recovery operation. We then
compare achievable communication rates of the combined encoding-error-recovery
channel by calculating the channel's hashing bound for each code. Cat and
binomial codes perform similarly, with binomial codes outperforming cat codes
at small loss rates. Despite not being designed to protect against the
pure-loss channel, GKP codes significantly outperform all other codes for most
values of the loss rate. We show that the performance of GKP and some binomial
codes increases monotonically with increasing average photon number of the
codes. In order to corroborate our numerical evidence of the cat/binomial/GKP
order of performance occurring at small loss rates, we analytically evaluate
the quantum error-correction conditions of those codes. For GKP codes, we find
an essential singularity in the entanglement fidelity in the limit of vanishing
loss rate. In addition to comparing the codes, we draw parallels between
binomial codes and discrete-variable systems. First, we characterize one- and
two-mode binomial as well as multi-qubit permutation-invariant codes in terms
of spin-coherent states. Such a characterization allows us to introduce check
operators and error-correction procedures for binomial codes. Second, we
introduce a generalization of spin-coherent states, extending our
characterization to qudit binomial codes and yielding a new multi-qudit code.Comment: 34 pages, 11 figures, 4 tables. v3: published version. See related
talk at https://absuploads.aps.org/presentation.cfm?pid=1351
Efficient Behavior of Small-World Networks
We introduce the concept of efficiency of a network, measuring how
efficiently it exchanges information. By using this simple measure small-world
networks are seen as systems that are both globally and locally efficient. This
allows to give a clear physical meaning to the concept of small-world, and also
to perform a precise quantitative a nalysis of both weighted and unweighted
networks. We study neural networks and man-made communication and
transportation systems and we show that the underlying general principle of
their construction is in fact a small-world principle of high efficiency.Comment: 1 figure, 2 tables. Revised version. Accepted for publication in
Phys. Rev. Let
Critical brain networks
Highly correlated brain dynamics produces synchronized states with no
behavioral value, while weakly correlated dynamics prevents information flow.
We discuss the idea put forward by Per Bak that the working brain stays at an
intermediate (critical) regime characterized by power-law correlations.Comment: Contribution to the Niels Bohr Summer Institute on Complexity and
Criticality (2003); to appear in a Per Bak Memorial Issue of PHYSICA
Destabilising conventions using temporary interventions
Conventions are an important concept in multi-agent systems as they allow increased coordination amongst agents and hence a more efficient system. Encouraging and directing convention emergence has been the focus of much research, particularly through the use of fixed strategy agents. In this paper we apply temporary interventions using fixed strategy agents to destabilise an established convention by (i) replacing it with another convention of our choosing, and (ii) allowing it to destabilise in such a way that no other convention explicitly replaces it. We show that these interventions are effective and investigate the minimum level of intervention needed
- âŠ