59 research outputs found

    Coded Caching Schemes for Two-dimensional Caching-aided Ultra-Dense Networks

    Full text link
    Coded caching technique is an efficient approach to reduce the transmission load in networks and has been studied in heterogeneous network settings in recent years. In this paper, we consider a new widespread caching system called (K1,K2,U,r,M,N)(K_1,K_2,U,r,M,N) two-dimensional (2D) caching-aided ultra-dense network (UDN) with a server containing NN files, K1K2K_1K_2 cache nodes arranged neatly on a grid with K1K_1 rows and K2K_2 columns, and UU cache-less users randomly distributed around cache nodes. Each cache node can cache at most M≤NM\leq N files and has a certain service region by Euclidean distance. The server connects to users through an error-free shared link and the users in the service region of a cache node can freely retrieve all cached contents of this cache node. We aim to design a coded caching scheme for 2D caching-aided UDN systems to reduce the transmission load in the worst case while meeting all possible users' demands. First, we divide all possible users into four classes according to their geographical locations. Then our first order optimal scheme is proposed based on the Maddah-Ali and Niesen scheme. Furthermore, by compressing the transmitted signals of our first scheme based on Maximum Distance Separable (MDS) code, we obtain an improved order optimal scheme with a smaller transmission load.Comment: 44 page

    Telomere maintenance-related genes are important for survival prediction and subtype identification in bladder cancer

    Get PDF
    Background: Bladder cancer ranks among the top three in the urology field for both morbidity and mortality. Telomere maintenance-related genes are closely related to the development and progression of bladder cancer, and approximately 60%–80% of mutated telomere maintenance genes can usually be found in patients with bladder cancer.Methods: Telomere maintenance-related gene expression profiles were obtained through limma R packages. Of the 359 differential genes screened, 17 prognostically relevant ones were obtained by univariate independent prognostic analysis, and then analysed by LASSO regression. The best result was selected to output the model formula, and 11 model-related genes were obtained. The TCGA cohort was used as the internal group and the GEO dataset as the external group, to externally validate the model. Then, the HPA database was used to query the immunohistochemistry of the 11 model genes. Integrating model scoring with clinical information, we drew a nomogram. Concomitantly, we conducted an in-depth analysis of the immune profile and drug sensitivity of the bladder cancer. Referring to the matrix heatmap, delta area plot, consistency cumulative distribution function plot, and tracking plot, we further divided the sample into two subtypes and delved into both.Results: Using bioinformatics, we obtained a prognostic model of telomere maintenance-related genes. Through verification with the internal and the external groups, we believe that the model can steadily predict the survival of patients with bladder cancer. Through the HPA database, we found that three genes, namely ABCC9, AHNAK, and DIP2C, had low expression in patients with tumours, and eight other genes—PLOD1, SLC3A2, RUNX2, RAD9A, CHMP4C, DARS2, CLIC3, and POU5F1—were highly expressed in patients with tumours. The model had accurate predictive power for populations with different clinicopathological features. Through the nomogram, we could easily assess the survival rate of patients. Clinicians can formulate targeted diagnosis and treatment plans for patients based on the prediction results of patient survival, immunoassays, and drug susceptibility analysis. Different subtypes help to further subdivide patients for better treatment purposes.Conclusion: According to the results obtained by the nomogram in this study, combined with the results of patient immune-analysis and drug susceptibility analysis, clinicians can formulate diagnosis and personalized treatment plans for patients. Different subtypes can be used to further subdivide the patient for a more precise treatment plan

    Thyroid function and associated mood changes after COVID-19 vaccines in patients with Hashimoto thyroiditis

    Get PDF
    ContextSevere acute respiratory syndrome-coronavirus 2 (COVID-19) vaccines may incur changes in thyroid functions followed by mood changes, and patients with Hashimoto thyroiditis (HT) were suggested to bear a higher risk.ObjectivesWe primarily aim to find whether COVID-19 vaccination could induce potential subsequent thyroid function and mood changes. The secondary aim was to find inflammatory biomarkers associated with risk.MethodsThe retrospective, multi-center study recruited patients with HT receiving COVID-19–inactivated vaccines. C-reactive proteins (CRPs), thyroid-stimulating hormones (TSHs), and mood changes were studied before and after vaccination during a follow-up of a 6-month period. Independent association was investigated between incidence of mood state, thyroid functions, and inflammatory markers. Propensity score–matched comparisons between the vaccine and control groups were carried out to investigate the difference.ResultsFinal analysis included 2,765 patients with HT in the vaccine group and 1,288 patients in the control group. In the matched analysis, TSH increase and mood change incidence were both significantly higher in the vaccine group (11.9% versus 6.1% for TSH increase and 12.7% versus 8.4% for mood change incidence). An increase in CRP was associated with mood change (p< 0.01 by the Kaplan–Meier method) and severity (r = 0.75) after vaccination. Baseline CRP, TSH, and antibodies of thyroid peroxidase (anti-TPO) were found to predict incidence of mood changes.ConclusionCOVID-19 vaccination seemed to induce increased levels and incidence of TSH surge followed by mood changes in patients with HT. Higher levels of pre-vaccine serum TSH, CRP, and anti-TPO values were associated with higher incidence in the early post-vaccine phase

    Fundamental Storage-Latency Tradeoff in Cache-Aided MIMO Interference Networks

    No full text

    IMPROVING THE BATTERY PERFORMANCE OF LiVPO

    No full text

    FedNP: Towards Non-IID Federated Learning via Federated Neural Propagation

    No full text
    Traditional federated learning (FL) algorithms, such as FedAvg, fail to handle non-i.i.d data because they learn a global model by simply averaging biased local models that are trained on non-i.i.d local data, therefore failing to model the global data distribution. In this paper, we present a novel Bayesian FL algorithm that successfully handles such a non-i.i.d FL setting by enhancing the local training task with an auxiliary task that explicitly estimates the global data distribution. One key challenge in estimating the global data distribution is that the data are partitioned in FL, and therefore the ground-truth global data distribution is inaccessible. To address this challenge, we propose an expectation-propagation-inspired probabilistic neural network, dubbed federated neural propagation (FedNP), which efficiently estimates the global data distribution given non-i.i.d data partitions. Our algorithm is sampling-free and end-to-end differentiable, can be applied with any conventional FL frameworks and learns richer global data representation. Experiments on both image classification tasks with synthetic non-i.i.d image data partitions and real-world non-i.i.d speech recognition tasks demonstrate that our framework effectively alleviates the performance deterioration caused by non-i.i.d data
    • …
    corecore