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Background: Bladder cancer ranks among the top three in the urology field for both
morbidity and mortality. Telomere maintenance-related genes are closely related to the
development andprogressionof bladder cancer, andapproximately60%–80%ofmutated
telomere maintenance genes can usually be found in patients with bladder cancer.

Methods: Telomere maintenance-related gene expression profiles were obtained
through limma R packages. Of the 359 differential genes screened, 17 prognostically
relevant ones were obtained by univariate independent prognostic analysis, and then
analysed by LASSO regression. The best result was selected to output the model
formula, and 11 model-related genes were obtained. The TCGA cohort was used as
the internal group and the GEO dataset as the external group, to externally validate
the model. Then, the HPA database was used to query the immunohistochemistry of
the 11 model genes. Integrating model scoring with clinical information, we drew a
nomogram. Concomitantly, we conducted an in-depth analysis of the immune
profile and drug sensitivity of the bladder cancer. Referring to the matrix
heatmap, delta area plot, consistency cumulative distribution function plot, and
tracking plot, we further divided the sample into two subtypes and delved into both.

Results: Using bioinformatics, we obtained a prognostic model of telomere
maintenance-related genes. Through verification with the internal and the external
groups, we believe that the model can steadily predict the survival of patients with
bladder cancer. Through the HPA database, we found that three genes, namely ABCC9,
AHNAK, and DIP2C, had low expression in patients with tumours, and eight other
genes—PLOD1, SLC3A2, RUNX2, RAD9A, CHMP4C, DARS2, CLIC3, and POU5F1—were
highly expressed in patients with tumours. Themodel had accurate predictive power for
populations with different clinicopathological features. Through the nomogram, we
could easily assess the survival rate of patients. Clinicians can formulate targeted
diagnosis and treatment plans for patients based on the prediction results of patient
survival, immunoassays, and drug susceptibility analysis. Different subtypes help to
further subdivide patients for better treatment purposes.

Conclusion: According to the results obtained by the nomogram in this study, combined
with the results of patient immune-analysis and drug susceptibility analysis, clinicians can
formulate diagnosis and personalized treatment plans for patients. Different subtypes can
be used to further subdivide the patient for a more precise treatment plan.
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1 Introduction

According to statistics, the incidence of bladder cancer is
increasing year by year, and its incidence ranks among the top ten
among all tumours. Because of smoking, hormones, and other factors,
the incidence of bladder cancer is higher in men, ranking sixth among
all tumours in men (Kamat et al., 2016; Lenis et al., 2020; Siegel et al.,
2021; Sung et al., 2021). Patients with bladder cancer have poor quality
of life and high mortality, with a 5-year overall survival rate as low as
23% (Antoni et al., 2017; Lee et al., 2018; Kuroki and Guntupalli,
2020). Advanced age, hair colouring, and smoking are all associated
with bladder cancer, with smoking increasing the risk of bladder
cancer up to six-fold (Shariat et al., 2010; Freedman et al., 2011;
McKiernan and Asafu-Adjei, 2017). At present, the conventional
treatment method is surgical resection with adjuvant chemotherapy
and immunotherapy, but the postoperative recurrence rate of bladder
cancer in patients is high, and the effect of adjuvant chemotherapy and
immunotherapy is limited, so it is extremely important to explore new
treatment methods (Kamat et al., 2016). Due to the complex causes of
bladder cancer, and its high degree of heterogeneity, the traditional
staging system has limited clinical role (Gerlinger et al., 2015; Kluth
et al., 2015). Therefore, there is an urgent need to develop a new
prognostic model for predicting the survival of patients with bladder
cancer, so that clinicians can develop different treatment plans for
patients with different survival periods.

Telomeres are specific nucleoprotein structures composed of
TTAGGG nucleotide repeats. These special structures protect the
ends of chromosomes, and are often referred to as the biological
clock of cell division (Piqueret-Stephan et al., 2016). Studies have
found that most tumour cells achieve immortality by counteracting
telomere shortening, through the telomere maintenance mechanism
(TMM) (Shay and Wright, 2001). In addition, telomeres are also
associated with heart disease, congenital dyskeratosis, diabetes, and
other diseases (Elks and Scott, 2014; Maciejowski and de Lange, 2017;
Savage, 2018). Relevant studies have found that 60%–80% of patients
with bladder cancer are affected by telomerase reverse transcriptase
promoter (TERT) mutations (Bell et al., 2016; Günes et al., 2018;
Lopez-Beltran et al., 2021). As early as 2018, a review by Ricardo Leão
et al. described in detail the various genetic and epigenetic mechanisms
that lead to the upregulation of hTERT in tumors, and pointed to its
strong potential as a biomarker (Leao et al., 2018). In a further study by
Ricardo Leão et al., in 2019, it was confirmed that the genetic and
epigenetic combination of the TERT promoter was able to predict the
prognosis of NMIBC (Leao et al., 2019).

Through previous research, we have found that telomere
maintenance genes are closely related to the occurrence and
development of tumours, and bladder cancer is no exception. In-depth
research on the relationship between telomere maintenance genes and
bladder cancer combined with bioinformatics is expected to find new
diagnostic indicators, to provide a reference for clinicians to diagnose and
formulate treatment plans. In this study, we calculated a prognostic model
of telomere maintenance genes for bladder cancer, using bioinformatics
techniques. By integrating the model formula scoring with clinical
information, we obtained a nomogram, which enabled the prediction
of the survival rate of patients with bladder cancer to be easily calculated.
As a result, clinicians can formulate diagnosis and personalized treatment
plans for patients, based on the results of patient survival prediction,
immunoassays, and drug susceptibility analysis.

2 Materials and methods

2.1 Acquisition of data

We downloaded the raw data for bladder cancer from the TCGA
database and collated the data in R (4.2.1) and Perl (strawberry
version). The external validation data came from the
GSE32894 dataset of the GEO database. The immunohistochemical
results of model-related genes were queried in the HPA database. In
addition, we obtained telomere maintenance genes through the TelNet
website.

2.2 Screening and analysis of prognostically
relevant differential genes

We obtained 2093 Telomere maintenance-related genes
through the TelNet database. Differential genes in tumours and
normal tissues were obtained using limma packages (Filter is fdr <
0.05, |logFC| > 1). The differential genes obtained by screening
were used for single-factor independent prognostic analysis. We
used the sva package to standardize TCGA and GEO data, to
remove batch effects, after which TCGA expression data were
combined with survival information. Univariate independent
prognostic analysis was performed to obtain prognostically
relevant differential genes (p < 0.005). The copies and mutations
of prognostically related genes were analysed.

2.3 Model construction and validation

Taking the TCGA cohort as the internal group, the GEO
cohort built the lasso regression model for the external
group. The model was then cross-validated, and the best result
was selected to output the model formula and obtain the model-
related genes. Then, all samples in the internal group and the
external group were scored by the model formula, to obtain the
risk score. All samples were divided into A and B groups, based on
the median risk score of the internal group (Group A was high
risk, and Group B low risk). Finally, the survival analysis of the
internal and external groups was carried out to test the stability of
the model. Then, progression-free survival analysis and ROC
curve were used to test the accuracy of the model. Univariate
and multivariate independent prognostic analysis was used to
assess whether the risk score could be used as an independent
prognostic indicator. The HPA database was again used to query
the immunohistochemistry of model genes.

2.4 Validation of the predictive power of the
model in different populations

To confirm the generalizability of the model, we first analysed
the correlation of the model with clinicopathological information
in patients with bladder cancer. Patients were grouped according
to clinicopathological information and survival analysis
performed, to assess whether the model worked for different
populations.
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2.5 Construction and calibration of
nomograms

To render model use more intuitive to clinicians, we drew a
nomogram that integrated the age, tumour stage, and risk score of
patients with bladder cancer. Next, we evaluated the accuracy of the
nomogram, by comparing the predicted and actual values in the
calibration curve. Further independent prognosis analysis was
carried out on the nomogram, to assess whether the nomogram
was not affected by other factors.

2.6 Pathway enrichment analysis

Firstly, the enrichment of the pathway was analysed by GSVA.
Then, we used KEGG and GO for the enrichment of the pathway.

2.7 Immune-related analysis

We first looked at the relationship between immune cell
infiltration and risk scores through seven different analytical

FIGURE 1
Flow chart of this study.
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platforms (TIMER, CIBERSORT, XCELL, QUANTISEQ,
MCPCOUNTER, EPIC, and CIBERSORT). The microenvironments
of the tumours were analysed by the estimation package. Then,
ssGSEA was used to measure the infiltration of immune cells, and

the enrichment of immune-related functions in the high- and low-risk
groups. Finally, the differences in the expression of immune
checkpoint-related genes between high- and low-risk groups were
studied.

FIGURE 2
Prognostically relevant differential genes are obtained. (A)Upset plot for this study; (B) Volcanicmap of 359 differentially expressed telomeresmaintained
relevant genes; (C) Heatmap of 359 differentially expressed telomeres maintained relevant genes; (D) Forest plot of 17 prognostically relevant telomere
maintenance-related genes; (E) Prognostic network diagram of 15 prognostically relevant telomeres maintenance-related genes.
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FIGURE 3
Correlation analysis andmutations and copies of prognostically differential genes (A)Heatmap of the correlation of 17 prognostically relevant differential
genes; (B) Waterfall plot of 17 prognostically relevant differential genes; (C) Co-mutation heatmap of 17 prognostically prognostically relevant differential
genes; (D) Statistical chart of copy frequencies of 17 prognostically related differential genes; (E) Copy number circle plot of 17 prognostically relevant
differential genes.
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2.8 Drug susceptibility analysis

Using the pRRophetic package, the semi-maximum inhibitory
concentration (IC50) of the targeted drug was predicted by gene
expression levels to reflect therapeutic sensitivity.

2.9 Identification and analysis of different
subtypes

To explore personalized treatment of bladder cancer, we divided
samples into different subtypes through the ConsensusClusterPlus
package, based on the expression of the 11 model-related genes.
Survival analysis and clinical correlation analysis were then
performed for different subtypes. Plotting Sankey to understand
the distribution of different subtypes and high- and low-risk
groups. In order to explore the immune characteristics of different
subtypes, we also performed immune-related analysis on different
subtypes. Finally, we performed drug susceptibility analyses for
different subtypes.

2.10 Statistical analysis

All statistical analyses are performed using perl software and R
software (version 4.2.1, packages: sva, limma, pheatmap, survival,
survminer, maftools, RCircos, glmnet, timeROC, ggpubr, regplot,
rms, ConsensusClusterPlus, estimates, scales, ggplot2, ggtext,
reshape2, tidyverse, GSEABase, and pRRophetic). Unless
otherwise stated, for all analyses in this study the estimated
p-value was < 0.05. For all comparisons: “*” p < 0.05, “**” p <
0.01, “**” p < 0.001.

3 Results

3.1 Seventeen prognostically relevant
differential genes were obtained

First, we demonstrate the entire process of the study (Figure 1;
Figure 2A). We obtained 1,725 differentially expressed genes in
tumours and normal tissues through differential analysis. In the
volcano map, the 1,725 differential genes are at different locations.
We obtained 359 significantly different genes (|logFC| > 1, Fdr <
0.05), of which 66% were upregulated in red, 34% were
downregulated in green, and the rest were represented in black
(Figure 2B). We selected the 50 points farthest from the coordinate
axis in the red and green regions of the volcano map, to plot the
heat map (Figure 2C). The expression spectrum of the resulting
differential genes was standardized with GSE32894, to remove
batch effects. The expression profiles of 307 genes were obtained,
and then combined with survival information, to obtain
17 prognostically relevant differential genes, of which 14 were
HR > 1 and 3 HR < 1 (Figure 2D). Through the prognostic network

diagram, we found that 15 genes were co-expressed (Figure 2E, p <
0.0001).

3.2 Co-expression and mutations and copies
of prognostically relevant differential genes

The co-expression, mutations, and copies of prognostically
related differential genes were further analysed. The relationship
between the 17 prognostically relevant genes was mainly positive,
with CALD1 and DPYSL3 exhibiting the strongest correlation
(Figure 3A). Mutation analysis found that 10 of the 17 genes were
mutated, with the AHNAK gene being the most frequently
mutated, and the most frequent mutation type being missense
(Figure 3B). Interestingly, the AHNAK gene co-mutates with 11 of
the other 16 genes, and there are also significant co-mutations
between the PDGFRA gene and the DARS2 gene (Figure 3C).
Analysing the copy situation, we were surprised to find that 94% of
the gene copy number increase is greater than the copy number
loss. We could also observe the localization of related genes on the
chromosome, through the copy number circle map
(Figures 3D, E).

3.3 Model construction and verification

By performing lasso regression on 17 prognostically relevant
differential genes, we found that 11 genes (ABCC9, AHNAK,
CHMP4C, CLIC3, DARS2, DIP2C, PLOD1, POU5F1, RAD9A,
RUNX2, and SLC3A2) had minimal error when constructing the
model (Supplementary Figures S1, S2). Therefore,

Risk score = EXP [(ABCC9 * 0.104875875974905) + (AHNAK *
0.105361774967532) + (CHMP4C * –0.177580413347782) + (CLIC3 *
0.0643555617499566) + (DARS2 * 0.242694054934441) + (DIP2C *
0.0988937249166662) + (PLOD1 * 0.0520153294064727) + (POU5F1
* -0.0320143641599491) + (RAD9A * –0.234743212057812) +
(RUNX2 * 0.0706278491949038) + (SLC3A2 * 0.123190106690304)]

We divided patients in the internal and external groups into A
and B groups by scores, and then performed survival analysis.
Unless otherwise noted, the median risk score for patients in the
internal group was used here to classify all patients into high-risk
or low-risk groups. Group A was high risk and Group B was low
risk. We found that patients in group A have a worse prognosis in
both the internal and external groups (Figures 4A, B). We also
observed that, as the risk score increased, so did the number of
patient deaths. Mortality was higher in high-risk patients than in
low-risk patients (Figures 4C–H). In the forest plot of the single-
factor independent prognostic analysis, we observed that the
predictive power of the risk score was independent of other
factors, and better than other factors (p < 0.001, HR = 3.975,
Figure 4I). We reached the same conclusion in a multivariate
independent prognostic analysis (Figure 4J). The AUC of risk
score in the multivariate ROC curve (AUC = 0.728) was much
higher than the AUC of other indicators (Figure 4K). In addition,
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all ROC values obtained in the timieROC curve were above 0.7
(0.702, 0.710, and 0.728, see Figure 4L). Finally, through
progression-free survival analysis, we found that patients in
group B had longer progression-free survival and better quality
of life (Figure 4M). Therefore, a more aggressive treatment plan
should be formulated for patients in group B.

3.4 The immunohistochemical staining
results of model-related genes were
consistent with gene expression

Through rigorous screening, we obtained 11 model-relevant
genes (Figure 5A). While three genes (AHNAK, ABCC9, and
DIP2C) were highly expressed in normal tissues, eight genes
(CHMP4C, CLIC3, DARS2, PLOD1, POU5F1, RAD9A,
RUNX2, SLC3A2) were highly expressed in tumour tissues
(Figure 5B). By querying the immunohistochemistry of these
genes through the HPA database, we found that AHNAK,
ABCC9, and DIP2C stained deeper in normal tissues, and
CHMP4C, CLIC3, DARS2, PLOD1, POU5F1, RAD9A, RUNX2,

SLC3A2 stained deeper in tumour tissues (Figure 5C), which is
consistent with their gene expression.

3.5 Prognostic models are equally applicable
to populations with different
clinicopathological features

In the clinically relevant heatmap, as well as the boxplot, is
noticeable that a patient’s risk increases with age and as the
tumour progresses (Figures 6A, B, E, H). Eight genes (SLC3A2,
DARS2, DIP2C, PLOD1, RUNX2, ABCC9, AHNAK, and CLIC3)
may be involved in the malignant transformation of tumours, and
three genes (CHMP4C, POU5F1, and RAD9A) may have a protective
effect in patients with tumours (Figure 6A). Survival analysis was
performed in patients grouped with different clinicopathological
features, and we obtained consistent results, except in patients with
low-grade bladder cancer (Figures 6C, D, F, G, J). We examined the
data for this phenomenon and found that high-risk patients rarely had
low-grade bladder urothelial carcinoma, which was the only case in
our data. Conclusions drawn in the absence of sufficient data are

FIGURE 4
External validation of the predictive power of the model in prognosis.(A) Survival analysis of TCGA cohorts; (B) Survival analysis of GEO cohorts; (C, E, G)
Risk curve for TCGA cohorts; (D, F, H) Risk curve for GEO cohort; (I) Univariate independent prognostic analysis forest plot; (J) Multifactorial independent
prognostic forest plot; (K) Clinical ROC curve; (L) Time ROC curve; (M) Progression-free survival analysis of TCGA cohorts.
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justifiably inaccurate. Therefore, the model is also applicable to people
with different clinicopathological characteristics.

3.6 Drawing of a nomogram

Through the above research, we have obtained a stable and reliable
scoring model. We integrated model scoring with clinically accessible age
and tumour stage information, to create a more user-friendly nomogram
(Figure 7B).We used the ninth patient in the study cohort as an example to
show how to use this nomogram. The survival rate of the patient in the first
year is 0.919, in the third year is 0.746, and in the fifth year is 0.657; thereby,
the survival rate of the patient decreases year by year, which is consistent
with the actual situation in the clinic. For this patient, we should adopt a
more active diagnosis and treatment strategy. In the calibration curve, the
nomogram calculation for the first year was exactly consistent with the

actual survival rate, with the results for the third and fifth years slightly
deviating (Figure 7A). In the results of univariate independent prognostic
analysis, the nomogram was superior to other clinical indicators
(Figure 7C). This conclusion was further confirmed by the results of a
multivariate independent analysis (Figure 7D). In the multivariate ROC
curve, the result of the nomogram (AUC = 0.786) was second only to the
result of the scoring model (AUC = 0.850, see Figure 7E).

3.7 Pathway enrichment of GSVA, GO, and
KEGG

As tumours progress, their metabolism and function become
more complex. In previous analyses, we found that model scores
were positively correlated with tumour progression. This
conclusion was confirmed by the GSVA analysis heatmap, where

FIGURE 5
Model-related gene and protein expression.(A) Venn plot ofmodel-related genes; (B)Heatmap of 11model-related genes; (C) Immunohistochemistry of
11 model-related genes obtained from obtained from the HPA database.
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24% of pathways were active in regions with low model scores, and
76% were active in regions with high model scores (Figure 8A).
Most of the active pathways in the regions with low model scores
involve tissue cell metabolism, while the active pathways in regions
with higher model scores are closely related to a variety of

tumorigenesis and immune drives. Thus, the changes in the
early stage of tumours occur mainly at the metabolic level, and
various tumours may undergo similar processes in the terminal
stage. It is then feasible to speculate that changes in metabolic levels
may be the key to the early diagnosis of tumours. For advanced

FIGURE 6
Correlation of risk models with clinical data.(A) Clinically relevant heatmap of 11 risk model-related genes; (B–D) Boxplot and survival analysis of risk
score differences in patients of different ages; (E–G) Boxplot and survival in risk scores and survival analysis of patients with different grades. (H–J) Boxplot of
the difference in risk scores and survival analysis of patients with different grades.
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tumours, other types of treatment solutions may have reference
implications. Most of the pathways obtained by GO analysis were
related to extracellular matrix components and structures (Figures
8B–D). A total of 22 pathways were enriched by KEGG analysis
(Figures 8E–G).

3.8 Suitable treatment modalities for
advanced tumours are more diverse

In previous pathway enrichment analysis, we found that
advanced tumour immune pathways were more abundant, and

FIGURE 7
Nomograms are easier for clinical use.(A) 1, 3, 5 year calibration curve; (B)Nomogram; (C) Forest plot for single-factor independent prognostic analysis of
nomograms; (D) Forest plot for multi-factor independent prognosis analysis of nomograms; (E) Nomograms ROC curve.
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we surmised that this would help in selecting advanced tumour
treatment modalities. This hypothesis was further validated in
subsequent analyses. From the analysis of seven platforms, we
estimated that 67% of immune cells had a correlation coefficient

greater than 0 with the model score (Figure 9A). A further analysis
of the tumour microenvironment yielded the same conclusion
(Figures 9B–D). In stem cell correlation analysis, we found that
bladder cancer had strong stem cell characteristics in the early

FIGURE 8
Pathway enrichment of GSVA, KEGG, GO.(A) Pathway enrichment heat map for GSVA analysis; (B–D)Circle chart, significance bubble chart, significance
histogram for GO analysis; (E–G) Circle plot, significance bubble chart, significance histogram for KECG analysis.
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stage, which may be related to the recurrent nature of bladder
cancer (Figure 9E). To understand which cells had increased
infiltration in advanced tumour tissue, we presented the results
as boxplots by ssGSEA analysis (Figure 9F). As expected, 87.5% of
immune cells were significantly elevated in advanced tumours.

Correspondingly, all immune-related functions were active in
advanced tumours (Figure 9G). To explore the causes for this,
we analysed the immune checkpoint gene (Figure 9H). Incredibly,
74% of the immune checkpoint genes we analysed were highly
expressed in advanced tumours. So, immune checkpoint inhibitors

FIGURE 9
Immunocorrelated analysis between high-and low-risk groups; (A) Immune cell correlation analysis bubble map; (B–D) Box plot of tumor
microenvironment analysis; (E) Scatterplot of stem cell correlation analysis; (F) ssGSEA analysis of immune cell infiltration box plot; (G) ssGSEA analysis of
immuno-related function enrichment boxplot; (H) Box plot of gene expression difference associated with immune checkpoints in high-and low-risk groups.
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may be a good option in patients with advanced bladder cancer.
Other immunotherapy modalities may also be valuable in patients
with advanced bladder cancer. The sensitivity analysis for
chemotherapy drugs in patients with bladder cancer showed
that patients with advanced bladder cancer had a wider choice
of chemotherapy drugs (Supplementary Figure S3). When tumours
enter the advanced stage, it is often difficult to achieve good results
with a single treatment method. Through our model, we have
explored a variety of treatment options that have significant
implications for patients with advanced tumours.

3.9 Identification of subtypes to further
explore treatment options

Referring to the matrix heatmap, delta area plot, consistency
cumulative distribution function plot, and tracking plot, we divided
the sample into two subtypes (Supplementary Figures S4A–D). From
the Sankey plot, we observed that patients with the C1 subtype had
only minor differences when compared with patients with advanced
tumours, and patients with the C2 subtype intersect with those with
advanced tumours (Supplementary Figure S4E). The PCA diagram for
both was well distinguished (Supplementary Figures S4F, G). The
clinically relevant heatmap shows the distribution of different clinical
features across subtypes (Supplementary Figure S4H). Although the
distribution of patients in the subtype differed slightly from those in
the model, the survival of patients with the C2 subtype was still higher
than that of the C1 subtype (Supplementary Figure S4I).

We further explored treatment options for subtypes using similar
analytical methods. When exploring immunotherapy options, we
obtained the same results as before, except that the infiltration of
individual immune cells differed (Supplementary Figure S5). As
further analysis of the specific mechanisms of the results might
reveal the cause for this, we performed drug susceptibility analysis,
and obtained fewer sensitive drugs than before. This demonstrates that
the subtyping of bladder cancer has limited effect for the precise use of
chemotherapy drugs (Supplementary Figure S6).

4 Discussion

Telomere maintenance mechanisms are widespread in bladder
cancer. In this study, we used a public database to establish a
scoring model for telomere maintenance genes. After external data
verification and querying the immunohistochemistry of model
genes, the results obtained by the model were considered stable
and reliable. By grouping patients with different
clinicopathological features, we further confirmed that the
model is equally reliable in different populations. In addition,
we plotted nomograms, to make the model easier to use in the
clinic. Just by scoring this model and some information that is
commonly available in the clinic, we can predict the multi-year
survival rate of each patient. The treatment plan is often different
for patients with different survival periods, so our research may be
helpful for individualized treatment. For patients who are
expected to survive longer, we often need to adopt a more
positive attitude. For patients with a small expected survival
period, palliative care is most often required, to relieve patient

suffering and save medical resources. After obtaining the expected
survival of patients, combined with the results of the analysis of
immune characteristics and the sensitivity analysis of
chemotherapy drugs, formulating appropriate treatment
methods for patients at different stages of tumour development
would be possible. The differentiation between different subtypes
of tumours was conducted to further explore the options of
precision treatment. Unfortunately, this study did not have the
capacity to conduct in-depth research on specific immune
mechanisms, as the data for the study was generated from
public databases. Although this study was thorough in the
verification of the predictive ability of nomograms, it still
requires practical clinical research as theoretical support.

The pathways related to metabolism were mainly enriched in
the regions with low model scores, while the pathways related to
immunity and tumours were mainly enriched in regions with high
model scores. This suggests that the characteristics of tumour
tissue are gradually changing as the model score increases
(i.e., tumour progression). This indicates that early tumours
may only change in metabolism, and through this phenomenon
we can look for some characteristic metabolites for early diagnosis
of tumours. On the other hand, advanced tumours have similar
development to other tumours, and local invasion of immune cells
is more pronounced. A single treatment for advanced tumours
often has little effect, and this feature allows us to draw inspiration
from effective treatment options in other cancers, to enrich the
treatment of advanced bladder cancer. Immunotherapy and multi-
agent chemotherapy regimens are expected to enrich the diagnosis
and treatment of patients with advanced bladder cancer.

Through the HPA database, we found that three genes
(ABCC9, AHNAK, and DIP2C) had low expression in patients
with tumours, whereas eight genes (PLOD1, SLC3A2, RUNX2,
RAD9A, CHMP4C, DARS2, CLIC3, and POU5F1) were highly
expressed.

In a tissue microarray study of 87 primary urothelial carcinoma
and 17 control cases, we found that RUNX2 independently predicted
early tumour recurrence in patients with bladder urothelial carcinoma
(Abdelzaher and Kotb, 2016). An in vivo study also found that
microRNA-154 could inhibit cellular malignancies by targeting
RUNX2 (Zhao et al., 2017). Other studies found that CHMP4C
can not only promote the malignant development of cervical
cancer cells, but also regulate the occurrence and progression of
lung squamous cell carcinoma through the cell cycle pathway (Lin
et al., 2020; Liu et al., 2021). CHMP4C has also been shown to be a
prognostic marker for cervical cancer (Hu et al., 2022). Based on the
correlation between tumour cells, we can speculate that CHMP4C is
equally reliable as a prognostic marker for bladder cancer. DARS2 is
not only a gene related to telomere maintenance, but also an RBP gene
(Gerstberger et al., 2014). As such, DARS2 can be used as a prognostic
marker for bladder cancer (Guo et al., 2020; Wu et al., 2021). CLIC3 is
highly expressed in bladder cancer and is a marker of poor prognosis
in patients with bladder cancer (Chen et al., 2020). Previous studies
have shown that POU5F1 is highly expressed in bladder cancer, which
is consistent with our findings (Atlasi et al., 2007). POU5F1 is
overexpressed in tumour cells and may be associated with tumour
progression and metastasis (Chang et al., 2008). POU5F1 can enhance
tumour immune response by upregulating the TET1-dependent
NRF2/MDM2 axis in bladder cancer (Mao et al., 2021).
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5 Conclusion

In this study, we constructed a reliable prognostic model that can
accurately predict patient prognosis. Our search for precision therapy
has the potential to enrich the treatment options for patients with
advanced bladder cancer.
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