46 research outputs found

    Instant Interfacial Self-Assembly for Homogeneous Nanoparticle Monolayer Enabled Conformal ‘lift on’ Thin Film Technology

    Get PDF
    Thin film fabrication is of great importance in the modern engineering. Here, we propose a universal and conformal thin film technique enabled by the wetting empowered interfacial self-assembly. By tailoring the contact angle of nanoparticle (NP), a NP monolayer can be assembled instantly (within 5 seconds) with an excellent harvesting efficiency (up to 97.5 wt). This self-assembly strategy presents a universal applicability on various materials, e.g. non-metal, metal and core-shell structures, and can achieve a monolayer with same in-plane area as 4-inch wafer in a single process, indicating great potential for scale-up manufacturing. Through a template transfer, we coat the surface of different substrates (plastic, paper, etc.) with the assembled film in a conformal and non-destructive ‘lift-on’ manner and subsequently demonstrate fluorescent micropatterns. This self-assembly strategy has great implications in advancing thin film technology with a user-friendly and cost-effective fashion, for the applications in anti-counterfeiting, actuators, and wearable/flexible electronic

    DSCA-PSPNet: Dynamic spatial-channel attention pyramid scene parsing network for sugarcane field segmentation in satellite imagery

    Get PDF
    Sugarcane plays a vital role in many global economies, and its efficient cultivation is critical for sustainable development. A central challenge in sugarcane yield prediction and cultivation management is the precise segmentation of sugarcane fields from satellite imagery. This task is complicated by numerous factors, including varying environmental conditions, scale variability, and spectral similarities between crops and non-crop elements. To address these segmentation challenges, we introduce DSCA-PSPNet, a novel deep learning model with a unique architecture that combines a modified ResNet34 backbone, the Pyramid Scene Parsing Network (PSPNet), and newly proposed Dynamic Squeeze-and-Excitation Context (D-scSE) blocks. Our model effectively adapts to discern the importance of both spatial and channel-wise information, providing superior feature representation for sugarcane fields. We have also created a comprehensive high-resolution satellite imagery dataset from Guangxi’s Fusui County, captured on December 17, 2017, which encompasses a broad spectrum of sugarcane field characteristics and environmental conditions. In comparative studies, DSCA-PSPNet outperforms other state-of-the-art models, achieving an Intersection over Union (IoU) of 87.58%, an accuracy of 92.34%, a precision of 93.80%, a recall of 93.21%, and an F1-Score of 92.38%. Application tests on an RTX 3090 GPU, with input image resolutions of 512 × 512, yielded a prediction time of 4.57ms, a parameter size of 22.57MB, GFLOPs of 11.41, and a memory size of 84.47MB. An ablation study emphasized the vital role of the D-scSE module in enhancing DSCA-PSPNet’s performance. Our contributions in dataset generation and model development open new avenues for tackling the complexities of sugarcane field segmentation, thus contributing to advances in precision agriculture. The source code and dataset will be available on the GitHub repository https://github.com/JulioYuan/DSCA-PSPNet/tree/main

    Synthesis of [B,Al]-EWT-Type Zeolite and Its Catalytic Properties

    No full text
    EWT zeolite belongs to ultra-large pore zeolite with the 10MR and 21MR channels, which has good thermal stability, certain acid strength and good application prospects in petroleum refining and petrochemical reactions. However, EWT zeolite has fewer medium/strong acid sites, especially Brönsted acid sites, which makes it difficult to apply to acid-catalyzed reactions. The regulation of acid amount and distribution was achieved by boron and aluminum substitution into the siliceous framework of EWT. The physico-chemical properties of the samples were characterized by XRD, SEM, N2 adsorption-desorption, XRF, ICP, Py-IR, NH3-TPD and 11B & 27Al & 29Si MAS NMR. The results show that quantities of boron and aluminum elements can occupy the framework of [B,Al]-EWT to increase the density of medium and strong acid centers, with more acidity and Brönsted acid centers than EWT zeolite. In the reaction of glycerol with cyclohexanone, the conversion of the sample (U-90-08-10/U-90-H-HCl) is significantly higher than that of the EWT sample, approaching or exceeding the Beta zeolite. A catalytic activity study revealed a direct correlation between the Brönsted acidic site concentration and the activity of the catalyst. The U-90-08-10-H catalyst was also considerably stable in the catalytic process. This work shows, for the first time, that extra-large pore zeolites can be used in industrial acid-catalytic conversion processes with excellent catalytic performance

    One-pot synthesis of Ag nanoparticles/ZnO nanorods heterostructures for organic dyes decoloring

    No full text
    One-pot synthesis of Ag nanoparticles/ZnO nanorods heterostructures for organic dyes decolorin

    Au nanoparticle-loaded PDMAEMA brush grafted graphene oxide hybrid systems for thermally smart catalysis

    No full text
    A novel smart catalytic system was successfully constructed by using poly[(dimethylamino) ethyl methacrylate] (PDMAEMA) brush grafted graphene oxide (GO) to load gold nanoparticles (Au NPs). The catalytic activity of the Au NPs was finely tuned by temperature, which can control the inclusion and 'exposure' of Au NPs inside the PDMAEMA brushes via the phase transition of the grafted PDMAEMA chain triggered by a temperature above the lower critical solution temperature (LCST) of PDMAEMA

    Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    No full text
    The halophyte tamarisk (Tamarix) is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology) terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658), which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding

    A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7

    No full text
    Because of the distinctive features of ease-of-use, low cost and portable detection, a gold nanoparticle (AuNP) based lateral flow immunoassay (LFA) is an effective and currently used method for the detection of Escherichia coli O157:H7; however, its low sensitivity limits its practical use. In the present study, the size and uniformity of AuNPs have been systematically optimized to maximally amplify both the visual inspection signals (the color of test line) and the quantitative data (light intensity) recorded using a bioassay reader. The remarkable enhancement of detection sensitivity can be increased to 10(2) colony forming units per mL by taking advantage of the optimized AuNPs and the separated incubation of the AuNPs/antibody/E. coli O157: H7 complex. Quantitative detection of E. coli O157: H7 was partially obtained in a wide concentration range with good repeatability. The new, optimized AuNPs-based LFA is well suited to fast quantitative and qualitative food analysis

    Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7

    No full text
    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 103 colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields

    Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films

    No full text
    Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Film
    corecore