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Sugarcane plays a vital role inmany global economies, and its efficient cultivation is

critical for sustainable development. A central challenge in sugarcane yield

prediction and cultivation management is the precise segmentation of

sugarcane fields from satellite imagery. This task is complicated by numerous

factors, including varying environmental conditions, scale variability, and spectral

similarities between crops and non-crop elements. To address these segmentation

challenges, we introduce DSCA-PSPNet, a novel deep learning model with a

unique architecture that combines a modified ResNet34 backbone, the Pyramid

Scene Parsing Network (PSPNet), and newly proposed Dynamic Squeeze-and-

Excitation Context (D-scSE) blocks. Our model effectively adapts to discern the

importance of both spatial and channel-wise information, providing superior

feature representation for sugarcane fields. We have also created a

comprehensive high-resolution satellite imagery dataset from Guangxi’s Fusui

County, captured on December 17, 2017, which encompasses a broad spectrum

of sugarcane field characteristics and environmental conditions. In comparative

studies, DSCA-PSPNet outperforms other state-of-the-art models, achieving an

Intersection over Union (IoU) of 87.58%, an accuracy of 92.34%, a precision of

93.80%, a recall of 93.21%, and an F1-Score of 92.38%. Application tests on an RTX

3090 GPU, with input image resolutions of 512 × 512, yielded a prediction time of

4.57ms, a parameter size of 22.57MB, GFLOPs of 11.41, and a memory size of

84.47MB. An ablation study emphasized the vital role of the D-scSE module in

enhancing DSCA-PSPNet’s performance. Our contributions in dataset generation

and model development open new avenues for tackling the complexities of

sugarcane field segmentation, thus contributing to advances in precision

agriculture. The source code and dataset will be available on the GitHub

repository https://github.com/JulioYuan/DSCA-PSPNet/tree/main.
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1 Introduction

Sugarcane, accounting for approximately 70% of the world’s

sugar production (Shield, 2016) and serving as a substantial source

of biofuel, is a crop with considerable economic and environmental

consequences (Cardona et al., 2010; Sindhu et al., 2016). The crop’s

relevance extends beyond its nutritional and energy contributions,

playing an integral part in global energy security and economic

stability (Moraes et al., 2015; Shield, 2016; Som-Ard et al., 2021).

The escalating global population and concurrent amplification of

energy demands necessitate the enhancement of sugarcane

cultivation efficiency and yield optimization (Li and Yang, 2015;

Som-Ard et al., 2021; Tabriz et al., 2021).

In recent years, remote sensing technology has emerged as a

potent game-changer in agriculture. Its ability to provide

comprehensive, accurate, and timely data is significantly altering

traditional agricultural practices (Khanal et al., 2020; Weiss et al.,

2020; Omia et al., 2023). This technology is particularly influential in

major sugarcane-producing countries like Brazil, India, and China,

where it has been instrumental in economic development and energy

security (dos Santos Luciano et al., 2018; Jiang et al., 2019; Som-Ard

et al., 2021). One of the key applications of remote sensing in

agriculture is crop field segmentation (Sun et al., 2022; Ji et al.,

2023), a process critical to various agricultural management

strategies, including crop health monitoring, yield estimation, and

resource allocation (Huan et al., 2021;Wang et al., 2022; Ji et al., 2023).

Given its substantial downstream impacts on agricultural decision-

making, achieving high accuracy levels in this operation is crucial.

To address this critical need, multiple techniques have been

implemented in crop field segmentation and mapping using remote

sensing data. For instance, one notable approach used a boundary-

semantic-fusion deep convolution network (BSNet) to delineate

farmland parcels from high-resolution satellite images, enhancing

the F1 and Intersection over Union (IoU) scores (Shunying et al.,

2023). An innovative open-source tool, HS-FRAG, has

demonstrated its robustness by using an object-based hybrid

segmentation algorithm for delineating agricultural fields,

part icular ly in fragmented landscapes (Duvvuri and

Kambhammettu, 2023). An edge detection model premised on a

connectivity attention-based approach and a high-resolution

structure network has been designed for farmland parcel

extraction. The model introduces a post-processing method to

connect disconnected boundaries, thereby enabling the generation

of more refined farmland parcels (Xie et al., 2023). Similarly, a

technique called the Multiple Attention Encoder-Decoder Network

(MAENet) was proposed for farmland segmentation, yielding an

impressive IoU score of 93.74% and a Kappa coefficient of 96.74%

(Huan et al., 2021). (Bian et al., 2023) proposed CACPU-Net, linked

crop type mapping with 2D semantic segmentation based on single-

source and single-temporal autumn.

Sentinel-2 satellite images, achieving excellent classification

accuracy on the parcel boundary. (Lu et al., 2023) proposed a

multi-scale feature fusion semantic segmentation model for crop

classification in high-resolution remote sensing images, providing a

good reference for high-precision crop mapping and field plot

extraction, while avoiding excessive data acquisition and processing.
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Advancements in crop field segmentation have closely

paralleled innovations in the broader arena of semantic

segmentation techniques. Initially, pioneering work like the Fully

Convolutional Network (FCN) introduced by (Long et al., 2015)

broke new ground by replacing the conventional fully connected

layer in CNNs with a convolutional layer for image segmentation.

This led to alternative frameworks such as SegNet, developed by

(Badrinarayanan et al., 2017), which further refined the architecture

by eliminating the fully connected layer of VGGNet (Simonyan and

Zisserman, 2014) and obviating the need for training during the up-

sampling process. However, these early models were hampered by

limitations, notably in contextual image comprehension and small

object recognition, which gave rise to classification errors.

Addressing these issues, the Unet model proposed by

(Ronneberger et al., 2015) improved segmentation through multi-

scale down-sampling and up-sampling fusion channels. To enhance

global context information coherence, the Pyramid Scene Parsing

Network (PSPNet) model was introduced by (Zhao et al., 2017),

featuring a pyramid pooling module. Meanwhile, (Yu and Koltun,

2015) innovated by introducing dilated convolution into the

traditional convolution kernel. Yet, the stacking of dilated

convolutions with the same dilation rate led to information loss.

The hybrid dilated convolution was proposed to address this,

combining the benefits of hole convolution while reducing

information loss (Wang et al., 2018). In the same vein, the

DeepLab series, including V1, V2, V3, and V3+, focused on the

study of dilated convolution (Chen et al., 2017a; Chen et al., 2017b).

A notable advancement is the Feature Pyramid Network (FPN),

which uses a top-down architecture with lateral connections to

build high-level semantic feature maps at all scales (Lin et al., 2017).

Recently, there has been a growing concern regarding the

computational burden posed by the extensive parameters inherent

in traditional semantic segmentation models. This burgeoning

challenge has not only increased the demand for computational

resources but has also hindered the scalability and real-time

deployment of these models in resource-constrained

environments. To address these limitations, the research

community has directed its focus toward the development of

efficient and fast semantic segmentation models (Zhang et al.,

2023). One pioneering effort in this direction is the introduction

of the “squeeze & excitation” mechanism in fully convolutional

networks, which emphasizes channel-wise feature recalibration to

adaptively emphasize informative features while suppressing less

useful ones (Roy et al., 2018). This approach has been further

enhanced by the Convolutional Block Attention Module (CBAM), a

flexible and lightweight module that can be seamlessly integrated

into any CNN architecture. CBAM refines feature maps spatially

and channel-wise, ensuring that the model pays selective attention

to vital regions in the input data (Woo et al., 2018). Similarly, the

Squeeze-and-Excitation Networks propose a novel architectural

unit that dynamically adjusts channel-wise feature responses

based on the interdependencies between channels, leading to a

substantial boost in model performance without considerable

computational overhead (Hu et al., 2018). Collectively, these

advancements reflect the broader trend in the field to optimize

model efficiency without compromising accuracy, ensuring that
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semantic segmentation models remain applicable and effective in

diverse real-world scenarios.

While semantic segmentation models have made impressive

strides, their application to farmland segmentation, particularly in

the case of complex crops like sugarcane, still faces a host of

challenges. The quest for consistent precision in farmland

segmentation, particularly for complex crops such as sugarcane, is

fraught with significant challenges (Som-Ard et al., 2021). Factors

including fluctuating light conditions, variations in agricultural

landscapes, disparities in field sizes, and evolving crop phenology

add layers of complexity to these tasks (Khanal et al., 2020; Weiss

et al., 2020; Omia et al., 2023). Therefore, it is imperative to develop

robust, advanced techniques that can overcome these obstacles and

deliver accurate sugarcane field segmentation.

To this end, the present study introduces an innovative deep

learning architecture for the segmentation of sugarcane fields,

incorporating a modified ResNet34 backbone with the PSPNet

and the proposed Dynamic Squeeze-and-Excitation Context (D-

scSE) blocks. This proposed model efficiently addresses the complex

challenges inherent in sugarcane field segmentation, outperforming

traditional techniques and standard deep learning architectures.

Moreover, given the importance of high-quality training data in

deep learning applications, our research also contributes a novel

dataset derived from high-resolution satellite imagery of Guangxi’s

Fusui County in December. This dataset presents a comprehensive

spectrum of environmental conditions and sugarcane field features,

representing a realistic testing ground for our model and future

similar applications.

The remainder of this paper is organized as follows: Section 2

details the study area, dataset characteristics, and the methodological

framework underpinning our research, including the development

and refinement of the DSCA-PSPNet architecture. Section 3 presents

the findings from our extensive experiments, offering both qualitative

and quantitative analyses of the model’s performance. In Section 4 we

explore the implications of our findings, address the limitations of the

current study, and outline potential avenues for future research.

Finally, Section 5 synthesizes the key contributions of our work,

highlighting its significance in the context of precision agriculture and

its broader impact on sustainable farming practices.

In essence, the contributions of this study are threefold:
Fron
1) The study introduces an innovative deep learning model

specifically engineered for sugarcane field segmentation.

Utilizing a unique combination of a modified ResNet34

backbone with PSPNet and proposed novel D-scSE blocks,

our model is equipped to effectively navigate through the

complexities of remote sensing in agricultural landscapes.

2) The utilization and contribution of a distinctive dataset,

comprised of satellite imagery from Guangxi’s Fusui

County in December, stands as a valuable asset. The data

capture the rich diversity of environmental conditions in the

region, thus presenting a robust testing bed for our model

and a valuable resource for the wider research community.

3) Our model stands apart in its performance, outperforming

existing state-of-the-art segmentation techniques.
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Tested rigorously against established models, our approach

demonstrates superior accuracy and robustness, establishing

a new benchmark in sugarcane field segmentation.
2 Materials and methods

2.1 Study sites and data

2.1.1 Study area
The study area is in Fusui County (As shown in Figure 1),

Guangxi Zhuang Autonomous Region, China, which is situated

between latitudes 22°30′N and 22°47′N and longitudes 107°62′E
and 107°96′E. This region is known for its extensive sugarcane

production, accounting for a significant portion of the country’s

sugarcane output. The climate in Fusui County is classified as a

subtropical monsoon climate, characterized by hot and humid

summers, mild winters, and abundant rainfall, which provides

suitable conditions for sugarcane cultivation.

The landscape in this area consists of diverse terrain, including

flatlands, riverbanks, and karst hills, which pose challenges for

accurate sugarcane field segmentation. The complex terrain may

lead to variations in the spectral signature of sugarcane fields, as

well as the presence of shadows, mixed pixels, and other occlusions.

Furthermore, the study area includes a range of land cover types,

such as cropland, forests, water bodies, and urban areas, which can

create difficulties in distinguishing sugarcane fields from other land

cover types.

2.1.2 Datasets
High-resolution RGB satellite images were acquired from the

BJ-2 satellite on December 18th, 2017 for the study area. The images

have a spatial resolution of 0.8 meters, which is suitable for

identifying and segmenting individual sugarcane fields at a fine

scale. Twenty remote sensing images of size 4096×4096 pixels² were

selected for this study. The selected images provide a

comprehensive representation of the landscape diversity and

phenological stages of sugarcane fields in the region. The exact

locations of these selected images are marked in Figure 1.

As shown in Figure 2, the images were acquired during cloud-

free conditions, with minimal atmospheric haze, to ensure optimal

image quality for the analysis. Additionally, the images were chosen

to represent various landscape features and land cover types present

in the study area, including diverse terrain, riverbanks, agricultural

lands, and urban areas. This selection strategy aimed to provide a

robust dataset that could effectively capture the challenges

associated with accurate sugarcane field segmentation in a

complex and dynamic environment.

2.1.3 Data quality and preprocessing
To uphold data integrity and uniformity in this study, we

embarked on a rigorous preprocessing regimen for the satellite

imagery acquired from the Guangxi Institute of Natural Resources

Remote Sensing (GXINRRS). These high-resolution images,
frontiersin.org
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captured by the BJ-2 satellite, underwent a comprehensive

preprocessing protocol, including atmospheric correction,

radiometric calibration, and geometric correction, using

ENVI software.

The atmospheric correction stage involved adjusting specific

parameters in the Fast Line-of-sight Atmospheric Analysis of

Spectral Hypercubes module, accounting for aerosol optical

thickness, precipitable water vapor, and atmospheric pressure.

This step ensured the minimization of atmospheric distortions,

thereby enhancing the representation of the ground reflectance.

During the radiometric calibration phase, the sensor’s radiometric

response function and the incident solar irradiance at the time of

acquisition were factored in. This calibration converted the raw
Frontiers in Plant Science 04
digital numbers in the images into standardized reflectance values,

ensuring their consistent representation across different scenes.

Lastly, geometric correction rectified any image distortions due to

sensor geometry, Earth’s curvature, and terrain relief, utilizing the

satellite’s ephemeris data, Earth’s ellipsoid and datum information,

and a digital elevation model for terrain correction. This step

facilitated the accurate portrayal of spatial relationships among

features in the images.

2.1.4 Ground truth data collection
The collection and verification of ground truth data for this

study was an intricate and meticulous process involving

collaboration with local agricultural experts, geography workers,
FIGURE 2

Selected images.
FIGURE 1

Study area.
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and sugarcane experts. The methodology was designed to ensure

accurate segmentation of sugarcane fields and robust training data

for the deep learning model.

The following steps were taken in the process of ground truth

data collection:
Fron
1) Image Acquisition and Preprocessing: We obtained BJ-2

satellite images of Fusui County, Guangxi, from GXINRRS

and performed the preprocessing techniques mentioned in

section 2.3. These images captured a diverse range of

environmental conditions.

2) Expert Annotation: Agricultural and sugarcane experts and

geography workers manually annotated the acquired

images using ArcGIS software. They drew polygons

around the sugarcane fields and delineated them by

hand-drawing, utilizing their deep knowledge of local

agriculture to identify these regions accurately.

3) Cross-Verification: After the initial annotation, the

annotated images were cross-checked by a separate team

of geography workers. They scrutinized the annotations,

ensuring the masks accurately represented sugarcane fields.

4) Review and Revision: Any images that were flagged during

cross-verification underwent a review and revision process.

The original experts and the verification team collaborated

to resolve discrepancies, resulting in a final, agreed-

upon annotation.

5) Final Dataset Formation: Once all images had been

annotated and verified, they were compiled into the final

dataset. With its carefully validated ground truth labels, this
tiers in Plant Science 05
dataset was then used for training, validating, and

evaluating the proposed deep learning model.
This rigorous process, while time-consuming, was necessary to

ensure the high quality and reliability of our ground truth data. This

process’s collaborative and iterative nature also served to minimize

human error and bias.
2.1.5 Closer look at selected images and
annotated masks

To provide a comprehensive understanding of the study area

and the inherent complexities it presents for sugarcane field

segmentation, we examine specific images from our dataset,

displayed collectively in Figure 3.

Figure 3 presents a comprehensive view of three different

landscapes and their corresponding segmentation maps, identified

as (A), (B), and (C). In column (A), a river area is captured with

features including a riverbank, karst hills, and sugarcane fields. This

image presents the challenge of segmenting sugarcane fields that are

intertwined with riverbanks, where water and vegetation

boundaries are often indistinct. The corresponding ground truth

for this area serves as the benchmark for our segmentation task.

Column (B) depicts a living area with buildings, karst hills, and

sugarcane fields. This scenario emphasizes the intricacy of

segmenting sugarcane fields near urban structures, where the line

between built and natural environments can be ambiguous. The

corresponding ground truth, excluding the small roads, trees,

bushes, and reaped sugarcane fields, helps in accurately

distinguishing between the urban structures and natural
A B C

FIGURE 3

(A) River area and ground truth; (B) Resident area and label; (C) Farmland area and label.
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vegetation. Lastly, column (C) portrays a farmland teeming with

mixed crops and sugarcane fields. This scene highlights the

difficulty of distinguishing sugarcane fields from other crop types

and non-crop vegetation, which often share overlapping spectral

characteristics, making the task of segmentation more complex. The

corresponding ground truth excluded small roads, reaped sugarcane

fields, and other non-sugarcane vegetation, which aids in

deciphering the diverse crops present in the image.

Together, these images underscore the diverse challenges

encountered during sugarcane field segmentation in our study

area. They highlight the necessity for an advanced deep learning

approach, one that is capable of grappling with these complexities

and delivering precise and reliable segmentation outcomes. The

source code and dataset will be available on the GitHub repository

https://github.com/JulioYuan/DSCA-PSPNet/tree/main.
2.2 DSCA-PSPNet

2.2.1 Backbone comparison
In the domain of semantic segmentation tasks, particularly for

complex applications like sugarcane field segmentation from

satellite images, the choice of backbone architecture substantially

influences the overall model performance. For this study, we

exclusively used PSPNet as the segmentation decoder, with the

focus of our experimentation being on selecting the most efficient

and accurate backbone. We considered six popular architectures,

namely ResNet34, ResNet50 (He et al., 2016), VGG16 (Simonyan

and Zisserman, 2014), EfficientNet-B5 (Tan and Le, 2019),

MobileNet-V3Large (Howard et al., 2019), and ViT-B/16 (Vision

Transformer) (Dosovitskiy et al., 2020), to serve as the backbone.

Experiments were carried out using the dataset and experiment

settings elaborated in sections 3.3.1 and 3.3.2. The backbone

architectures were compared based on metrics such as IoU, F1

scores, prediction time for a single 512x512 RGB image, number of

parameters, and memory footprint. The results are concisely

tabulated in Table 1:

Based on our comprehensive evaluation, ResNet34 emerges as

the most suitable backbone architecture for sugarcane field

segmentation when paired with the PSPNet decoder. With a

prediction time of 3.98ms, it not only facilitates real-time

inference but also operates with a manageable number of
Frontiers in Plant Science 06
parameters (21.44M), thereby making it amenable to deployment

in resource-constrained environments. Furthermore, its memory

requirement is 81.78 MB, while maintaining high IoU and F1

scores, indicative of its accuracy and reliability. Consequently, for

the specialized task of semantic segmentation in agricultural

settings, the balanced and robust performance of ResNet34

substantiates its selection as the backbone architecture.

2.2.2 Modified ResNet34 backbone
ResNet (He et al., 2016) is a family of deep residual networks

that effectively addresses the degradation problem in deep neural

networks by introducing residual connections. In this study, we

utilize the ResNet34 architecture as our model’s backbone, with

specific modifications tailored to the task of agricultural crop

field segmentation.

As illustrated in Figure 4A, the modified ResNet34 backbone

consists of several components. It begins with an input layer,

followed by a stem composed of a convolutional layer, batch

normalization, and a ReLU activation function. The stem is

succeeded by two residual layers, each containing a series of

standard residual blocks, as depicted in Figure 4B. These residual

layers capture local features in the input images.

The latter part of the backbone includes two dilated layers, with

dilated blocks that incorporate dilated convolutions (Yu and

Koltun, 2015), as shown in Figure 4C. The dilated blocks allow

for a larger receptive field without increasing the number of

parameters or computational complexity. The final output layer

generates high-level feature maps for the input images.

The modified ResNet34 backbone integrates the advanced D-

scSE attention mechanism after each residual layer (layer1, layer2,

layer3, and layer4), enhancing channel and spatial dependencies

and refining feature representation. The inclusion of the D-scSE

mechanism improves the model’s ability to capture essential

contextual information, leading to more precise segmentation

results. A detailed examination of the D-scSE mechanism’s design

and its role in augmenting the modified ResNet34 backbone will be

provided in section 3.3.

The architecture’s larger receptive field, achieved by

incorporating dilated convolutions in the later stages, is especially

beneficial for capturing contextual information in high-resolution

agricultural imagery with objects spanning various spatial scales. By

incorporating these modifications, the backbone design provides an
TABLE 1 Metrics comparison for different backbones

Methods IoU F1-Score Prediction
Time (ms)

Parameters
(Million)

Memory
Size (MB)

ResNet34 83.18 89.49 3.98 21.44 81.78

ResNet50 81.46 89.31 4.16 24.30 92.70

VGG16 78.85 88.09 4.98 39.34 150.09

EfficientNet-B5 81.17 89.42 7.97 28.41 108.40

MobileNet-V3Large 77.09 86.97 2.98 3.02 11.52

ViT-B/16 81.66 89.76 12.95 24.35 92.89
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effective foundation for the decoder to generate accurate

agricultural crop field segmentation maps, addressing the specific

challenges of the task and leveraging the power of residual

networks, dilated convolutions, and the D-scSE mechanism.

2.2.3 D-scSE block
The D-scSE mechanism, where “D” stands for “Dynamic,” is an

advanced attention mechanism inspired by the original scSE (Roy

et al., 2018). While the original scSE effectively encodes channel and

spatial dependencies, it doesn’t account for the varying importance

of these aspects across different input data or stages of network

depth. The importance of spatial and channel-wise features may

dynamically vary based on the contextual information in the scene,

or the intricacy of the features being learned at different network

layers. This limitation could potentially restrict the learning

capacity and performance of the original scSE.

To overcome this, the D-scSE mechanism introduces dynamic

weights, providing a more adaptive balancing between the

significance of spatial and channel-wise information. These weights

are learned during the training process, offering the flexibility to

modulate the degree of attention applied to the spatial and channel

dimensions based on the input’s inherent characteristics.

In this section, we will delve into the specifics of the D-scSE’s

design, its components, and the way it refines feature

representation. We’ll discuss how this dynamic weighting scheme

leads to enhanced feature learning and contributes to the overall

efficacy of our proposed model architecture.

1) Channel Squeeze and Spatial Excitation Block (sSE): This

block focuses on spatial information, as shown in Figure 5A. The

input feature mapU∈ RC×H×W is first channel-wise squeezed using a.
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1 × 1 convolution (Equation 1):

U = ½u1,1,u1,2, …, ui,j, …, uH,W � ·  with ui,j ∈ RC�1�1 (1)

The spatial squeeze operation computes the output matrix k ∈
RH�W (Equation 2):

k = Wk ⋆U (2)

where Wk ∈ RC�1�1 and ⋆ denotes the convolution operation.

The spatial information weight is added to the feature map U by

applying the sigmoid activation function (·)

to each element in k (Equation 3):

Û sSE = Fscale(U , k)

= ½s (k1,1)u1,1,…,s (ki,j)ui,j,…,s (kH,W )uH,W � (3)

2) Spatial Squeeze and Channel Excitation Block (cSE): This

block focuses on channel-wise dependencies, as shown in Figure 5B.

The input feature map U is first spatially squeezed using global

average pooling and global max pooling (concatenated) before

passing them through the convolutional layers (Equation 4):

x =  Concat 
1

H �Wo
H

i
o
W

j
U(:, i, j), max

i=1,…,H ;j=1,…,W
U(:, i, j)

 !
(4)

To discern the dependency information between channels, a

single fully connected layer is employed, with weights  W ∈ RC�2C .

Activation of this layer is achieved through the application of the

ReLU function (·) and the sigmoid function s(·) (Equation 5):

s = s (Wd (x)) (5)
A B C

FIGURE 4

(A) schematic of the modified ResNet34 architecture. (B) schematic of the standard residual block. (C) schematic of the dilated residual block.
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The final output is obtained by re-scaling the transformation U

(Equation 6):

bU cSE = Fscale(U , s) = s⋆U (6)

We introduce dynamic weighting to balance the contributions

of the sSE and cSE branches to the final output. The outputs of the

sSE and cSE branches are combined (Equation 7):

Û D−scSE = aÛ sSE + bÛ cSE (7)

where a and b are learnable parameters initialized by sampling

from a uniform distribution U( −
ffiffiffiffiffiffiffiffi
6=n

p
,
ffiffiffiffiffiffiffiffi
6=n

p
) where n is the

number of input units in the weight tensor. These dynamic weights

are updated during the training process, allowing the D-scSE

module to adaptively balance the importance of spatial and

channel information based on the input data.

D-scSE module enhances the original scSE mechanism by

integrating dynamic weighting and diversified pooling strategies, as

shown in Figure 5. With the sSE branch concentrating on spatial

information and the cSE branch addressing channel-wise

dependencies, the module effectively recalibrates both dimensions of

the feature map. By employing learnable weights, the D-scSE module

adeptly balances spatial and channel information, ultimately delivering

a robust feature extraction mechanism for the segmentation task.
2.2.4 Pyramid scene parsing network decoder
In our proposed architecture, we utilize the PSPNet decoder,

originally introduced by (Zhao et al., 2017), to generate high-quality

segmentation results. The decoder effectively captures contextual

information from the output feature map of the encoder by

leveraging pyramid parsing and fusing multi-scale features.
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Additionally, the decoder is integrated with the D-scSE

mechanism to further refine the feature representation.

The decoder comprises the following components:
1) Pyramid Pooling Module: This module is designed to

extract contextual information from the input feature

map by applying multiple pooling operations with

varying kernel sizes. This approach enables the capture

of both local and global context at different scales. The

pyramid pooling module consists of four parallel

branches, each employing an average pooling layer with

a unique kernel size. Subsequently, a 1x1 convolution is

used to reduce the number of channels to a predefined

number (e.g., C/4). The resulting feature maps are then

upsampled to their original spatial dimensions using

bilinear interpolation.

2) Feature Concatenation: The upsampled feature maps

originating from the pyramid pooling module are

concatenated with the initial input feature map,

facilitating the fusion of multi-scale contextual information.

3) D-scSE Mechanism: As detailed in Section 3.3, the D-scSE

mechanism is incorporated following the feature

concatenation step to adaptively recalibrate the spatial

and channel-wise information. The inclusion of the D-

scSE mechanism within the decoder further refines the

feature representation, enabling the model to better

manage varying object scales and shapes.

4) Final Convolution Layers: After implementing the D-scSE

mechanism, the feature map is processed through a series

of convolutional layers to generate the ultimate output

segmentation map. This typically consists of one or more
A

B

FIGURE 5

A schematic representation of the D-scSE mechanism. (A) sSE module and (B) cSE module.
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Fron
3x3 convolutions, followed by a 1x1 convolution to

project the feature map onto the desired number of

output classes. The final segmentation map is then

upsampled to match the original input image size using

bilinear interpolation.
By integrating the PSPNet decoder with the D-scSE

mechanism, DSCA-PSPNet (as shown in Figure 6) effectively

captures and exploits multi-scale contextual information,

thereby enhancing segmentation performance. This decoder

design contributes to the generation of more accurate and finer-

grained segmentation maps, ultimately improving the overall

efficacy of the architecture.
2.3 Experiments

2.3.1 Data preparation and augmentation
To create a diverse and representative dataset for model

validation, twenty remote sensing images of size 4096x4096

pixels² were selected from the remote sensing images of Fusui

County in Guangxi Zhuang Autonomous Area. The locations of

the data samples were selected based on the presence of

different land features, such as river areas, farmland areas, and

living areas.

Each of the twenty original 4096×4096 images was cropped

into sixty-four 512×512 images, resulting in a total of 1280

images. This cropping is a standard practice in semantic

segmentation tasks, especially when handling high-resolution

imagery, to manage GPU memory constraints and optimize

computational efficiency. While this approach divides larger

sugarcane plots into smaller segments, it does not significantly

impact the segmentation task. Our model is designed to
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accurately classify each pixel within these segments, ensuring

effective and reliable segmentation across the cropped images. To

ensure a balanced dataset for model training and evaluation, 70%

of the cropped images from each original image were allocated to

the training set, 15% were assigned to the validation set, and the

remaining 15% were assigned to the test set. This partitioning

strategy ensured that the training, validation, and test sets

contained a diverse range of features and challenges associated

with sugarcane field segmentation.

Data augmentation techniques were applied to increase the

diversity of the training dataset, making the model more robust and

capable of handling real-world scenarios. The augmentation

techniques applied to the dataset include rotation, horizontal and

vertical flipping, random scaling, random brightness and contrast

adjustment, addition of Gaussian noise, Gaussian blur, and hue,

saturation, and value adjustment. These augmentations were

performed using the Albumentations Python library. For each

original training sample, 5 augmented samples were generated by

applying all the aforementioned augmentation techniques

simultaneously. This resulted in an augmented dataset of 4480

samples. Hence, the distribution of samples among the training,

validation, and test sets as shown in Table 2.
FIGURE 6

Structure of DSCA-PSPNet.
TABLE 2 Sample distribution across training, validation, and test sets .

Dataset Original
Images

Augmented
Images

Total
Images

Training set 896 4480 5376

Validation set 192 0 192

Test set 192 0 192
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2.3.2 Experimental design
The experiments conducted in this study, which encompassed

the training, validation, and testing of the proposed model, were

performed on a system equipped with the Windows 10 System. The

experimental runtime environment was set up using Anaconda3,

Python 3.10.5, CUDA 11.7, and OpenCV 4.6. The hardware used

for the experiments included 64 GB RAM, Intel (R) Core i9-

10980XE@3.00GHz processor, and a NVIDIA RTX 3090 GPU.

Pytorch was chosen as the deep learning framework for

implementing the proposed model.

The purpose of the experiments in this study was to verify the

effectiveness of the proposed model, in the recognition of sugarcane

field. The fed images were 512×512. The AdamW optimizer, an

improvement over traditional Adam by decoupling weight decay

from the optimization steps, was utilized to prevent overfitting and

achieve faster convergence. The learning rate was controlled using a

cyclical learning rate strategy. The base learning rate was set to

0.0001, and it cyclically varied between this value and a maximum

of 0.001, facilitating optimal convergence. Other hyperparameters

included an epoch count of 100 and a training batch size of 16.

2.3.3 Evaluation metrics
The accuracy, precision, IoU, F1 score, and Recall were

calculated (Equations 8–12) and used as the accuracy evaluation

indexes of the experimental results in this study, that is,

IoU =
TP

TP + FP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2� Precision� Recall
Precision + Recall

(12)

where TP denotes positive samples correctly classified by the

model, FN denotes positive samples incorrectly classified by

the model, FP denotes negative samples incorrectly classified by the

model, TN denotes negative samples correctly classified by the model.

Accuracy is depicted as the fraction of pixels that were

accurately predicted, in contrast to the total sum of pixels.

Precision constitutes an evaluative metric to gauge the accuracy

of predictions within a specific category. IoU is a statistical measure

that identifies the degree of overlap between the predicted and the

original annotated regions within an image. The F1 score is the

harmonic mean of precision and recall, serving as a balanced

estimator of the classifier’s performance. In addition, recall, also

known as sensitivity or true positive rate, quantifies the proportion

of actual positives that are correctly classified. It is an integral part of

the evaluation schema, examining the classifier’s proficiency in

identifying all the pertinent instances within the dataset.
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3 Results

3.1 Contrast experiments

In this revised section, we will first delve into the qualitative

analysis through the visual examination of segmentation results and

subsequently provide a quantitative examination through the

rigorous metric evaluations. Our objective remains to present a

coherent and comprehensive comparison of the proposed DSCA-

PSPNet with the benchmark models: Unet, DeepLabV3+, FPN,

and PSPnet.

Figure 7 displays the segmentation results for a landscape

marked by reaped land, sugarcane fields, and river banks. The

original images (Figure 7A) elucidate a complex environment where

sugarcane fields fringe the river banks, interspersed with fragments

of reaped land. The ground truth (Figure 7B) meticulously captures

the distinct boundaries between these zones. DSCA-PSPNet

(Figure 7G) demonstrates a remarkable alignment with the

ground truth, adeptly segment the sugarcane fields from adjacent

reaped land and preserving the nuanced contours of the karst hills.

In contrast, Unet (Figure 7C) falsely recognizes the karst hills green

vegetation as the sugarcane field, blurring the transition between

karst hills and sugarcane fields. Deeplabv3+ (Figure 7D) provides a

robust segmentation of sugarcane fields, but the delineation of

reaped land seems slightly generalized. FPN (Figure 7E) exhibits a

slightly better results but the miss segmentations are still existing.

PSPnet (Figure 7F) offers balanced performance, although minor

miss segmentations are evident, especially in regions where

sugarcane fields are situated in the narrow land between river and

hills. Collectively, the comparative analysis underscores DSCA-

PSPNet’s superior capability in effectively segmenting complex

riverine landscapes.

Figure 8 offers a detailed segmentation analysis of a landscape

primarily characterized by sugarcane fields, reaped land, other

vegetation, and minor road networks. The ground truth

(Figure 8B) accurately maps out these features, showcasing the

stark boundaries between cultivated sugarcane fields, reaped areas,

other vegetation, and the intricate web of roads. DSCA-PSPNet

(Figure 8G) mirrors this ground truth with impressive precision,

successfully delineating the sugarcane fields from reaped patches

and capturing the delicate intricacies of the minor roads and other

vegetation patches. In comparison, Unet (Figure 8C) occasionally

confuses the reaped land with lighter patches of sugarcane fields,

leading to minor segmentation inconsistencies. Deeplabv3+

(Figure 8D) effectively segments the larger sugarcane plots but

sometimes overlooks the subtle distinction between reaped land

and lighter sugarcane fields. FPN (Figure 8E) provides a

commendable segmentation but faces challenges in accurately

mapping the other vegetations. PSPnet (Figure 8F) produces a

balanced segmentation but has minor discrepancies in areas where

roads intersect with reaped land and other vegetations.

Collectively, the comparative evaluation emphasizes DSCA-

PSPNet ’s robust capability in accurately segmenting a

multifaceted farmland environment, highlighting its promise for

precision agriculture applications.
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Figure 9 delves into the segmentation of a landscape in the

residential zones with sprawling farmland areas. DSCA-PSPNet

(Figure 9G) emerges as a standout, replicating the ground truth

with exceptional accuracy. It captures the structured layout of

residential zones and small roads, and has the minimal miss

segmentations in water pond area. In contrast, Unet (Figure 9C)

exhibits challenges in accurately segmenting the water pond region.
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Deeplabv3+ (Figure 9D) adeptly identifies the larger residential

blocks but seems to slightly oversimplify the segmentation of

smaller farmland patches situated between residential clusters.

FPN (Figure 9E) offers a respectable segmentation but shows

major miss segmentation in water pond region too. PSPnet

(Figure 9F) provides a consistent segmentation but faces minor

deviations in areas where dense vegetation in farmlands is
A B D

E F G

C

FIGURE 8

Farmland area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet. (G) DSCA-PSPNet).
A B D

E F G

C

FIGURE 7

River area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet. (G) DSCA-PSPNet).
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proximal to residential zones. In summation, the analysis

underscores DSCA-PSPNet’s superior ability in segment the

residential and farmland landscapes, showing its power in mixed-

use land segmentation tasks.

To complement the qualitative insights underscoring the

enhanced performance of DSCA-PSPNet, we shall now transition

to a quantitative analysis that empirically substantiates

these observations.

Evidently, DSCA-PSPNet stands out across all evaluation

metrics, reinforcing its potency as affirmed by the visual

outcomes. Specifically, DSCA-PSPNet records an IoU of 87.58%,

indicative of its exceptional overlap prediction ability, leading the

second-best performer, PSPnet-resnet34, by a significant margin of

4.4%. Its accuracy score of 92.34% is the highest among all models,

reflecting the model’s impressive capability in classifying each pixel

correctly. In terms of precision, DSCA-PSPNet’s score of 93.8%

further cements its supremacy, signaling its strength in minimizing
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false positives, outperforming the runner-up, FPN-resnet34, by

approximately 0.77%. Additionally, DSCA-PSPNet records a

recall of 93.21% and an F1 score of 92.38%. These metrics

respectively highlight DSCA-PSPNet’s competence in accurately

identifying true positives and maintaining a balanced performance

between precision and recall.

Shifting focus to computational efficiency and resource

consumption in Table 3, DSCA-PSPNet continues to shine.

Although its prediction time of 4.57 ms for a single 512 × 512

image on RTX 3090 GPU is slightly slower than PSPnet-resnet34,

it outperforms Unet, DeeplabV3+ and FPN considerably.

Importantly, with 22.57M parameters, DSCA-PSPNet’s model

complexity is on par with other models, showcasing that

superior performance does not necessitate excessive complexity.

Further, DSCA-PSPNet’s GFLOPs and memory usage affirm

its efficiency, making it apt for deployment in resource-

constrained scenarios.
A B D
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C

FIGURE 9

Resident and farmland area prediction results of models. (A) Original Images. (B) Ground Truths. (C) Unet. (D) Deeplabv3+. (E) FPN. (F) PSPnet.
(G) DSCA-PSPNet).
TABLE 3 Accuracy metrics comparison for different segmentation methods.

Methods IoU Accuracy (%) Precision (%) Recall (%) F1-Score

Unet (resnet34) 78.44 88.65 84.69 91.90 87.06

DeepLabV3+(resnet34) 81.83 90.62 86.65 92.40 90.31

FPN (resnet34) 79.84 89.79 93.13 84.88 88.59

PSPnet (resnet34) 83.18 92.25 91.64 91.52 89.49

DSCA-PSPNet 87.58 92.34 93.80 93.21 92.38
Bold value is the highest value.
Underline value is the second highest value.
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In conclusion, the comprehensive evaluation presented in this

section, through both qualitative and quantitative perspectives,

cements the superiority of DSCA-PSPNet in sugarcane field

segmentation. Its consistent lead across a variety of performance

metrics, the demonstrated visual prowess, and efficient resource

utilization collectively mark DSCA-PSPNet as a promising tool in

the domain of sugarcane field segmentation and beyond. This

underscores the applicability and potential of DSCA-PSPNet for

real-world implementation, thus appealing to the academic

community and sugarcane practitioners alike.
3.2 Ablation study

The ablation study aims to examine the progression of

performance improvements that our proposed DSCA-PSPNet

offers, starting from the baseline PSPNet(resnet34), and its variants

augmented with sSE and cSE mechanisms, and finally to DSCA-

PSPNet. Using sSE and cSE in the same position as the D-scSE in the

models, ensures an unbiased and consistent basis for comparison.

A valuable tool in our analysis is the use of attention maps,

generated from the output of the final layer of the backbone. This

layer, rich with high-level semantic information, provides a detailed

visual guide to how different models prioritize areas within an image.

The attention maps in Figure 10, column (A) presents the original

images, and columns (B) to (E) show the attention maps for PSPNet,

PSPNet+sSE, PSPNet+cSE, and DSCA-PSPNet, respectively. The

difference in focus and detail becomes quite evident upon

comparison. The baseline PSPNet exhibits less distinct segmentation,
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while the addition of sSE and cSE mechanisms enhances the model’s

ability to distinguish different landforms more clearly. Yet, it is with

DSCA-PSPNet that we observe the most significant concentration of

attention on intricate agricultural details, such as edges and sugarcane

fields. This confirms the superior capability of our D-scSE mechanism

in capturing both local and global contextual details, enhancing the

model’s understanding of the image.

Along with visual observations from attention maps, we

perform a quantitative analysis on key performance metrics for

each model variant, as represented in the tables below:

Tables 4 and 5 shows that DSCA-PSPNet surpasses PSPnet and its

sSE and cSE variants in all performance metrics. For example, in terms

of IoU, DSCA-PSPNet outperforms the next best model, PSPnet+cSE,

by 2.4 percentage points. This pattern continues with Accuracy%(2.09

percentage points higher), Precision% (0.16 percentage points higher),

Recall% (1.69 percentage points higher), and F1-Score % (0.89

percentage points higher). These results confirm the effectiveness of

the D-scSE module in improving DSCA-PSPNet’s performance.

In summary, our ablation study systematically evaluates the

performance improvements of DSCA-PSPNet, beginning with the

baseline PSPNet (ResNet34) and progressing through its variants

augmented with sSE and cSEmechanisms, to the final DSCA-PSPNet

model. This study not only quantitatively demonstrates DSCA-

PSPNet’s superiority over its predecessors but also qualitatively

underlines the effectiveness of our design choices, particularly the

inclusion of the D-scSE module. By analyzing attention maps

generated from the model’s final layer, we observed a significantly

enhanced focus on critical sugarcane field details, such as field edges

and textures, in DSCA-PSPNet compared to the baseline and other
A B D EC

FIGURE 10

Columnnn (A) Original images. Columnn (B) Attention map of PSPnet. Columnn (C) Attention map of PSPnet+sSE. (D) Attention map of PSPnet+cSE.
(E) Attention map of DSCAPSPNet.
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variants. Quantitative analysis reveals that DSCA-PSPNet surpasses

other models in key performance metrics, including IoU, accuracy,

precision, recall, and F1-score, confirming the D-scSE module’s

pivotal role in improving segmentation capabilities. These results

collectively highlight the D-scSE module’s contribution to the

model’s overall efficacy in accurately segmenting complex

sugarcane cultivation scenes, thereby validating the module’s

integration as a critical enhancement in our deep learning

architecture for precision agriculture applications.
4 Discussion

The primary limitation of the DSCA-PSPNet study is its reliance

on a dataset exclusively from Guangxi’s Fusui County, captured on a

single date. This limitation, while providing high accuracy within its

narrow scope, raises concerns about the model’s robustness and

adaptability to different sugarcane cultivation environments. The

challenges in acquiring diverse, high-resolution satellite data, often

restricted due to censorship and stringent data-sharing policies,

combined with the intensive requirements of accurately labeling

such imagery, have led to a lack of dataset diversity (Sing et al.,

2021). Consequently, the model’s current iteration, although

advanced, might not fully account for the variances in sugarcane

fields across different geographical locations with varying

environmental conditions and agricultural practices. A critical aspect

yet to be verified is the model’s ability to accurately segment sugarcane

fields in different stages of growth, under varying weather conditions,

or in regions with distinct soil types (Lin et al., 2009). Addressing these

challenges is imperative for future research. Efforts will be

concentrated on expanding the model’s application to a broader

range of sugarcane-producing regions worldwide. For instance,

testing DSCA-PSPNet in countries like Brazil and India, which are
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major sugarcane producers but have different climatic conditions and

cultivation practices compared to southern China and south east Asia,

would be crucial. This would help assess the model’s adaptability and

performance in diverse sugarcane farming contexts. Additionally, the

examination of the model’s performance using multi-temporal

satellite imagery is essential. This would offer insights into its

capability to consistently recognize sugarcane fields throughout

different growth stages and under varying seasonal weather patterns,

such as the monsoon impact in South Asia or the dry season in Brazil.

Collaborations with international agricultural research institutes,

satellite imagery providers, and experts in global sugarcane

cultivation could facilitate access to a more varied range of data,

overcoming the limitations in data acquisition and labeling. Such

collaborative efforts are vital in refining DSCA-PSPNet to address the

unique challenges of sugarcane field segmentation in different parts of

the world. Enhancing the model’s accuracy and versatility in this

manner is not only crucial for advancing precision agriculture in the

context of sugarcane farming but also has broader implications for

sustainable agricultural practices and food security globally.
5 Conclusion

In the pursuit of sustainable agricultural practices, precise and

accurate crop field segmentation remains a critical concern.

Addressing this need, this study introduces the DSCA-PSPNet, a

deep learning model specifically designed for sugarcane field

segmentation. The integration of a modified ResNet34 backbone

with PSPNet and D-scSE blocks is pivotal to the model’s success. The

modified ResNet34 backbone, enhanced with dilated blocks, serves as

a robust foundation for feature extraction, capitalizing on its deep

residual learning framework to circumvent issues like vanishing

gradients in deeper networks. These dilated blocks significantly
TABLE 5 Accuracy metrics comparison in ablation study.

Methods IoU Accuracy (%) Precision (%) Recall (%) F1-Score

PSPnet(resnet34) 83.18 92.25 91.64 91.52 89.49

PSPnet+sSE 84.76 92.79 92.13 92.88 90.59

PSPnet+cSE 85.18 93.25 93.64 91.52 91.49

DSCA-PSPNet 87.58 92.34 93.80 93.21 92.38
Bold value is the highest value.
TABLE 4 Performance metrics comparison for different segmentation methods.

Methods
Prediction
Time (ms)

Parameters
(Million)

GFLOPs
Memory Size
(MB)

Unet(resnet34) 6.97 24.44 31.36 93.21

DeepLabV3+(resnet34) 5.98 22.44 31.62 85.60

FPN (resnet34) 7.24 23.16 27.49 88.33

PSPnet (resnet34) 3.98 21.44 9.41 81.78

DSCA-PSPNet 4.57 22.57 11.41 84.47
Bold value is the highest value.
Underline value is the second highest value.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1324491
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yuan et al. 10.3389/fpls.2023.1324491
augment the network’s capability for feature extraction, enabling the

model to cover a wider field of view, thus capturing more contextual

information without compromising resolution or incurring

additional computational costs (Zhang and Zhang, 2021). The

PSPNet component further assists in aggregating contextual

information across various scales, crucial for differentiating

sugarcane fields from other similar features in satellite imagery.

The D-scSE blocks add a dynamic aspect to the model by

recalibrating the channel-wise and spatial features in the network,

fine-tuning the focus on relevant features for precise segmentation.

Together, these elements enable DSCA-PSPNet to effectively navigate

the spectral and spatial complexities inherent in agricultural

landscapes. This design has enabled the model to achieve an IoU of

87.58%, an accuracy of 92.34%, a precision of 93.8%, a recall of

93.21%, and an F1-Score of 92.38%. These figures demonstrate its

superior performance over established models. Moreover, DSCA-

PSPNet proves to be computationally efficient, with a memory size of

84.47MB and a model size of 22.57MB.

In addition to developing the model, this study has compiled a

comprehensive high-resolution satellite imagery dataset from

Guangxi’s Fusui County, encompassing a broad spectrum of

environmental conditions and field characteristics. This dataset

provides a challenging yet realistic testing ground for DSCA-

PSPNet, contributing significantly to the validation and refinement

of the model. Furthermore, it represents a valuable resource for future

research and innovation in the field of agricultural segmentation. The

insights gained from this study not only demonstrate the potential of

DSCA-PSPNet in sugarcane field segmentation but also highlight the

model’s adaptability and potential applicability to other crop types.

Future research could leverage this model and dataset to explore

segmentation in different agricultural contexts, potentially expanding

the scope of precision agriculture. By integrating these advances with

ongoing research efforts, there is a strong potential for models like

DSCA-PSPNet to play a pivotal role in enhancing sustainable

farming practices, thereby contributing significantly to global food

security and sustainable development goals.
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