598 research outputs found

    Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale

    Get PDF
    Eddy covariance (EC) measurements are often used to validate net ecosystem productivity (NEP) estimated from satellite remote sensing data and biogeochemical models. However, EC measurements represent an integrated flux over their footprint area, which usually differs from respective model grids or remote sensing pixels. Quantifying the uncertainties of scale mismatch associated with gridded flux estimates by upscaling single EC tower NEP measurements to the grid scale is an important but not yet fully investigated issue due to limited data availability as well as knowledge of flux variability at the grid scale. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE) built a flux observation matrix that includes 17 EC towers within a 5 km × 5 km area in a heterogeneous agricultural landscape in northwestern China, providing an unprecedented opportunity to evaluate the uncertainty of upscaling due to spatial representative differences at the grid scale. Based on the HiWATER-MUSOEXE data, this study evaluated the spatial representativeness and uncertainty of EC CO2 flux measurements for upscaling to the grid scale using a scheme that combines a footprint model and a model-data fusion method. The results revealed the large spatial variability of gross primary productivity (GPP), ecosystem respiration (Re), and NEP within the study site during the growing season from 10 June to 14 September 2012. The variability of fluxes led to high variability in the representativeness of single EC towers for grid-scale NEP. The systematic underestimations of a single EC tower may reach 92(±11)%, 30(±11)%, and 165(±150)% and the overestimations may reach 25(±14)%, 20(±13)%, and 40(±33)% for GPP, Re, and NEP, respectively. This finding suggests that remotely sensed NEP at the global scale (e.g., MODIS products) should not be validated against single EC tower data in the case of heterogeneous surfaces. Any systematic bias should be addressed before upscaling EC data to grid scale. Otherwise, most of the systematic bias may be propagated to grid scale due to the scale dependence of model parameters. A systematic bias greater than 20% of the EC measurements can be corrected effectively using four indicators proposed in this study. These results will contribute to the understanding of spatial representativeness of EC towers within a heterogeneous landscape, to upscaling carbon fluxes from the footprint to the grid scale, to the selection of the location of EC towers, and to the reduction in the bias of NEP products by using an improved parameterization scheme of remote-sensing driven models, such as VPRM

    SIRT3 Protects Against Acute Kidney Injury via AMPK/mTOR-Regulated Autophagy

    Get PDF
    Acute kidney injury (AKI), which involves the loss of kidney function caused by damage to renal tubular cells, is an important public health concern. We previously showed that sirtuin (SIRT)3 protects the kidneys against mitochondrial damage by inhibiting the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, attenuating oxidative stress, and downregulating proinflammatory cytokines. In this article, we investigated the role of autophagy, mediated by a mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), in the protective effect of SIRT3, against sepsis-induced AKI, in a mouse model of cecal ligation and puncture (CLP). The AKI in CLP mice was associated with the upregulation of autophagy markers; this effect was abolished in SIRT3− mice in parallel with the downregulation of phospho (p)-AMPK and the upregulation of p-mTOR. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) or AMPK inhibitor compound isotonic saline (C), exacerbated AKI. SIRT3 overexpression promoted autophagy, upregulated p-AMPK and downregulated p-mTOR in CLP mice, attenuating sepsis-induced AKI, tubular cell apoptosis, and inflammatory cytokine accumulation in the kidneys. The blockage of autophagy induction largely abolished the protective effect of SIRT3 in sepsis-induced AKI. These findings indicate that SIRT3 protects against CLP-induced AKI by inducing autophagy through regulation of the AMPK/mTOR pathway

    Soluble Cytokine Receptors (sIL-2Rα, sIL-2Rβ) Induce Subunit-Specific Behavioral Responses and Accumulate in the Cerebral Cortex and Basal Forebrain

    Get PDF
    Soluble cytokine receptors are normal constituents of body fluids that regulate peripheral cytokine and lymphoid activity. Levels of soluble IL-2 receptors (sIL-2R) are elevated in psychiatric disorders linked with autoimmune processes, including ones in which repetitive stereotypic behaviors and motor disturbances are present. However, there is no evidence that sIL-2Rs (or any peripheral soluble receptor) induce such behavioral changes, or that they localize in relevant brain regions. Here, we determined in male Balb/c mice the effects of single peripheral injections of sIL-2Rα or sIL-2Rβ (0–2 µg/male Balb/c mouse; s.c.) on novelty-induced ambulatory activity and stereotypic motor behaviors. We discovered that sIL-2Rα increased the incidence of in-place stereotypic motor behaviors, including head up head bobbing, rearing/sniffing, turning, and grooming behavior. A wider spectrum of behavioral changes was evident in sIL-2Rβ-treated mice, including increases in vertical and horizontal ambulatory activity and stereotypic motor movements. To our knowledge, this is the first demonstration that soluble receptors induce such behavioral disturbances. In contrast, soluble IL-1 Type-1 receptors (0–4 µg, s.c.) didn't appreciably affect these behaviors. We further demonstrated that sIL-2Rα and sIL-2Rβ induced marked increases in c-Fos in caudate-putamen, nucleus accumbens and prefrontal cortex. Anatomical specificity was supported by the presence of increased activity in lateral caudate in sIL-2Rα treated mice, while sIL-2Rβ treated mice induced greater c-Fos activity in prepyriform cortex. Moreover, injected sIL-2Rs were widely distributed in regions that showed increased c-Fos expression. Thus, sIL-2Rα and sIL-2Rβ induce marked subunit- and soluble cytokine receptor-specific behavioral disturbances, which included increases in the expression of ambulatory activity and stereotypic motor behaviors, while inducing increased neuronal activity localized to cortex and striatum. These findings suggest that sIL-2Rs act as novel immune-to- brain messengers and raise the possibility that they contribute to the disease process in psychiatric disorders in which marked increases in these receptors have been reported

    Identification of a Novel Marine Fish Virus, Singapore Grouper Iridovirus-Encoded MicroRNAs Expressed in Grouper Cells by Solexa Sequencing

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are ubiquitous non-coding RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies has revealed that viruses can also encode miRNAs, which are proposed to be involved in viral replication and persistence, cell-mediated antiviral immune response, angiogenesis, and cell cycle regulation. Singapore grouper iridovirus (SGIV) is a pathogenic iridovirus that has severely affected grouper aquaculture in China and Southeast Asia. Comprehensive knowledge about the related miRNAs during SGIV infection is helpful for understanding the infection and the pathogenic mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether SGIV encoded miRNAs during infection, a small RNA library derived from SGIV-infected grouper (GP) cells was constructed and sequenced by Illumina/Solexa deep-sequencing technology. We recovered 6,802,977 usable reads, of which 34,400 represented small RNA sequences encoded by SGIV. Sixteen novel SGIV-encoded miRNAs were identified by a computational pipeline, including a miRNA that shared a similar sequence to herpesvirus miRNA HSV2-miR-H4-5p, which suggests miRNAs are conserved in far related viruses. Generally, these 16 miRNAs are dispersed throughout the SGIV genome, whereas three are located within the ORF057L region. Some SGIV-encoded miRNAs showed marked sequence and length heterogeneity at their 3' and/or 5' end that could modulate their functions. Expression levels and potential biological activities of these viral miRNAs were examined by stem-loop quantitative RT-PCR and luciferase reporter assay, respectively, and 11 of these viral miRNAs were present and functional in SGIV-infected GP cells. CONCLUSIONS: Our study provided a genome-wide view of miRNA production for iridoviruses and identified 16 novel viral miRNAs. To the best of our knowledge, this is the first experimental demonstration of miRNAs encoded by aquatic animal viruses. The results provide a useful resource for further in-depth studies on SGIV infection and iridovirus pathogenesis

    Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    Get PDF
    Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress.Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury.After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE).Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore