7 research outputs found

    The mechanisms of white matter injury and immune system crosstalk in promoting the progression of Parkinson’s disease: a narrative review

    Get PDF
    Parkinson’s disease (PD) is neurodegenerative disease in middle-aged and elderly people with some pathological mechanisms including immune disorder, neuroinflammation, white matter injury and abnormal aggregation of alpha-synuclein, etc. New research suggests that white matter injury may be important in the development of PD, but how inflammation, the immune system, and white matter damage interact to harm dopamine neurons is not yet understood. Therefore, it is particularly important to delve into the crosstalk between immune cells in the central and peripheral nervous system based on the study of white matter damage in PD. This crosstalk could not only exacerbate the pathological process of PD but may also reveal new therapeutic targets. By understanding how immune cells penetrate through the blood–brain barrier and activate inflammatory responses within the central nervous system, we can better grasp the impact of structural destruction of white matter in PD and explore how this process can be modulated to mitigate or combat disease progression. Microglia, astrocytes, oligodendrocytes and peripheral immune cells (especially T cells) play a central role in its pathological process where these immune cells produce and respond to pro-inflammatory cytokines such as tumor necrosis factor (TNF-α), interleukin-1β(IL-1β) and interleukin-6(IL-6), and white matter injury causes microglia to become pro-inflammatory and release inflammatory mediators, which attract more immune cells to the damaged area, increasing the inflammatory response. Moreover, white matter damage also causes dysfunction of blood–brain barrier, allows peripheral immune cells and inflammatory factors to invade the brain further, and enhances microglia activation forming a vicious circle that intensifies neuroinflammation. And these factors collectively promote the neuroinflammatory environment and neurodegeneration changes of PD. Overall, these findings not only deepen our understanding of the complexity of PD, but also provide new targets for the development of therapeutic strategies focused on inflammation and immune regulation mechanisms. In summary, this review provided the theoretical basis for clarifying the pathogenesis of PD, summarized the association between white matter damage and the immune cells in the central and peripheral nervous systems, and then emphasized their potential specific mechanisms of achieving crosstalk with further aggravating the pathological process of PD

    Metabolic reprogramming in the tumor microenvironment: unleashing T cell stemness for enhanced cancer immunotherapy

    Get PDF
    T cells play a pivotal role in the immune system by distinguishing between various harmful pathogens and cancerous cells within the human body and initiating an immune response. Within the tumor microenvironment (TME), immune effector T cells encounter both immunosuppressive cells and factors that hinder their functionality. Additionally, they endure robust and persistent antigenic stimulation, often leading to exhaustion and apoptosis. However, the stemness of T cells, characterized by their ability to survive and self-renew over extended periods, represents a primary target in immune checkpoint therapies such as anti-PD-1 therapy. T cell stemness encompasses specific memory T cell subsets and progenitor-exhausted T cells with stem cell-like properties. Therefore, understanding the impact of the TME on T cell stemness, including factors like K+, lactate, and H+, holds significant importance and can facilitate the mitigation of terminal T-cell depletion, the identification of potential resilient biomarkers or therapeutic targets resistant to immune checkpoint therapies, and ultimately lead to sustained anti-tumor effects. Thus, it offers a novel perspective for advancing tumor immunotherapy

    Nomogram for Predicting Portal Vein Thrombosis in Cirrhotic Patients: A Retrospective Cohort Study

    No full text
    Aim: Portal vein thrombosis (PVT) is a common complication in cirrhotic patients and will aggravate portal hypertension, thus leading to a series of severe complications. The aim of this study was to develop a nomogram based on a simple and effective model to predict PVT in cirrhotic patients. Methods: Clinical data of 656 cirrhotic patients with or without PVT in the First Affiliated Hospital of Soochow University and The Third Affiliated Hospital of Nantong University from January 2017 to March 2022 were retrospectively collected, and all patients were divided into training, internal and external validation cohorts. SPSS and R software were used to identify the independent risk factors and construct a predictive model. We evaluated the predictive value of the model by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses. The feasibility of the model was further validated in the internal and external cohorts. All enrolled patients were followed up to construct the survival curves and calculate the incidence of complications. Results: The predictors of PVT included serum albumin, D-dimer, portal vein diameter, splenectomy, and esophageal and gastric varices. Based on the clinical and imaging findings, the final model served as a potential tool for predicting PVT in cirrhotic patients, with an AUC of 0.806 (0.766 in the internal validation cohort and 0.845 in the external validation cohort). The decision curve analysis revealed that the model had a high level of concordance between different medical centers. There was a significant difference between the PVT and non-PVT groups in survival analyses, with p values of 0.0477 and 0.0319 in the training and internal validation groups, respectively, along with p value of 0.0002 in the external validation group according to log-rank test; meanwhile, the median survival times of the PVT group were 54, 43, and 40 months, respectively. The incidence of recurrent esophageal and gastric variceal bleeding (EGVB) during the follow-up showed significant differences among the three cohorts (p = 0.009, 0.048, and 0.001 in the training, internal validation, and external validation cohorts, respectively). Conclusion: The nomogram based on our model provides a simple and convenient method for predicting PVT in cirrhotic patients. Cirrhotic patients with PVT had a shorter survival time and were prone to recurrent EGVB compared with those in the non-PVT group

    Bulk Polymerization of Thermoplastic Shape Memory Epoxy Polymer for Recycling Applications

    No full text
    Conventional epoxy polymers are thermo-set and difficult to recycle and reuse. In this study, a series of linear thermoplastic epoxy polymers (EPx) with shape memory properties were prepared by using a bifunctional monoamine diglycolamine (DGA) as a curing agent and an equivalent amount of bifunctional rigid epoxy resin (E-51) and bifunctional flexible epoxy resin (polypropylenglycol diglycidyl ether, PPGDGE) in a bulk polymerization reaction. The results showed that these samples can fully react under the curing process of, 60 °C/2 h, followed by 80 °C/2 h, followed by 120 °C/2 h. The introduction of different contents of PPGDGE can adjust the Tg of the material to adapt to different environmental requirements, and can significantly increase the fracture strain of the material and improve its micro-phase separation structure. Thus, Rf of the material is close to 100%, and Rr is increased from 87.98% to 97.76%. Importantly, this linear chain structure allows the material to be easily recycled and reprocessed by dissolving or melting, and also means the material shows potential for 3D printing or other thermoplastic remolding
    corecore