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T cells play a pivotal role in the immune system by distinguishing between various
harmful pathogens and cancerous cells within the human body and initiating an
immune response. Within the tumor microenvironment (TME), immune effector
T cells encounter both immunosuppressive cells and factors that hinder their
functionality. Additionally, they endure robust and persistent antigenic stimulation,
often leading to exhaustion and apoptosis. However, the stemness of T cells,
characterized by their ability to survive and self-renew over extended periods,
represents a primary target in immune checkpoint therapies such as anti-PD-
1 therapy. T cell stemness encompasses specific memory T cell subsets and
progenitor-exhausted T cells with stem cell-like properties. Therefore,
understanding the impact of the TME on T cell stemness, including factors like
K+, lactate, and H+, holds significant importance and can facilitate themitigation of
terminal T-cell depletion, the identification of potential resilient biomarkers or
therapeutic targets resistant to immune checkpoint therapies, and ultimately lead
to sustained anti-tumor effects. Thus, it offers a novel perspective for advancing
tumor immunotherapy.
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Introduction

Malignant tumors represent a significant global health challenge, characterized by
elevated incidence and mortality rates, posing a severe threat to human well-being. In
2019, theWorld Health Organization reported that cancer stands as the second leading cause
of death among individuals under the age of 70 in 112 of 183 countries worldwide (Ferlay
et al., 2021). Recent investigations have revealed a strong association between the emergence
and progression of tumors and the tumor microenvironment (TME) (Xiao and Yu, 2021),
and alterations in the TME exert profound effects not only on the immune response within
tumors but also on the efficacy of tumor treatments (de Visser and Joyce, 2023).

In addition to conventional approaches such as surgery, chemotherapy, and
radiotherapy, the field of malignant tumor treatment has witnessed rapid advancements
in research areas such as stem cell biology, immunology, molecular technology, and tissue
engineering. Immunotherapy, recognized as a safe and effective treatment modality, has
found an increasingly prominent role in comprehensive cancer management (Lu et al.,
2022). Among the immune cells operating in the TME, T lymphocytes, especially CD8+
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T cells, have been identified as pivotal players in the eradication of
cancer cells (Reiser and Banerjee, 2016). Nonetheless, many cancer
treatments are limited by T cell exhaustion (Yang et al., 2022), and
addressing the causes of T cell exhaustion to sustain their stemness has
been shown to enhance the efficacy of immunotherapy in tumor
treatment, resulting in superior anti-tumor capabilities (Vodnala et al.,
2019; Li et al., 2020; Mo et al., 2021). T cell stemness, characterized by
the potential for prolonged survival, self-renewal and immune
reconstitution, has garnered substantial evidence supporting its
therapeutic relevance (Gattinoni et al., 2017; Morrot, 2017).
Immunotherapy, which can harness the inherent capacity of
T cells, is now considered a highly effective option for the
treatment of cancer patients. Herein, this article focuses on
investigating the impact of alterations in the TME on T cell stemness.

T cell stemness has been observed to be influenced by a range of
factors, including the androgen receptor (Yang et al., 2022), G
protein signaling 16 (Weisshaar et al., 2022), and changes in the
TME (Vodnala et al., 2019; Feng et al., 2022; Xie et al., 2023). The
TME represents a complex, interconnected system comprising
components within and surrounding tumor cells. Beyond the
tumor cells themselves, the TME can be broadly categorized into
the immune microenvironment, primarily composed of immune
cells, and the non-immune microenvironment, primarily comprised
of fibroblasts. Additionally, ions and microorganisms are also
present within the TME (Smetana and Masarik, 2022; de Visser
and Joyce, 2023). Notably, a distinctive hallmark of the TME is
hypoxia, which compels tumor cells to rely on anaerobic glycolysis
for energy metabolism, resulting in lactate accumulation (Vaupel
and Multhoff, 2017; Wei et al., 2021). Furthermore, ion-exchange
proteins on the tumor cell membrane continuously transport
intracellular H+ ions to the extracellular space (Chen and Pagel,
2015; Wei et al., 2021). Moreover, studies have revealed that both in
murine and human tumor cells, cell necrosis releases intracellular K+

ions into the extracellular fluid, elevating K+ ion concentrations in
the TME (Eil et al., 2016). Elevated levels of K+, lactate, and H+ in the
TME have the potential to diminish T cell apoptosis, thereby
promoting T cell stemness (Vodnala et al., 2019; Feng et al.,
2022; Cheng et al., 2023). Given that T cell stemness can have
long-lasting anti-tumor effects in immunotherapy, in this brief
review, we summarize the effects of TME changes on T cell
stem-cell properties for providing insights into optimizing and
enhancing immunotherapy strategies.

T cell status

T cells are highly heterogeneous and can be categorized into
distinct subsets based on their activation status, including naive
T cells, effector T cells, and memory T cells (Lanzavecchia and
Sallusto, 2005). Upon activation, naive T cells differentiate into
effector T cells, which do not engage in lymphocyte recirculation but
rather migrate to peripheral inflammatory sites or specific organ
tissues to execute immune responses, often culminating in
exhaustion (Wherry and Kurachi, 2015). On the other hand,
another portion of naive T cells differentiate into memory
T cells, which represent two key states: T cell stemness and
exhaustion. T cell stemness describes the stem cell-like behavior
of T cells, including self-renewal, multipotency, and sustained

functionality (Vodnala et al., 2019; Li et al., 2020). On the other
hand, T cell exhaustion signifies the progressive impairment of
effector functions due to prolonged to antigens, and exhausted
T cells (TEX) exhibit high expression of various inhibitory
receptors and demonstrate severe defects in cell proliferation and
cytokine production (Wherry and Kurachi, 2015; Gonzalez et al.,
2021). Therefore, it can be confirmed that the TME harbors diverse
T cell states including naive T cells, effector T cells, TEX, senescent
T cells, and stem-like T cells, each assuming distinct roles (Crespo
et al., 2013). Mouse studies have demonstrated that blocking T cell
differentiation can stimulate the generation of T cell stemness
(Crespo et al., 2013).

T cell exhausted

T cell exhaustion signifies the gradual decline of inflammatory
and antigen-responsive T cells during chronic infections and cancer
progression. They progressively lose their effector functions and
memory T cell characteristics, leading to an inability of the body to
sustain a durable and effective immune response (Wherry, 2011),
and in this state, the T cells become resistant to restimulation
(Crespo et al., 2013). T cell exhaustion is mainly characterized by
the loss of interleukin-2 (IL-2) production, diminished proliferative
potential, reduced cytolytic activity, and decreased expression of
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α),
ultimately compromising their protective capabilities (Wherry,
2011). However, exhausted T cell exhibits heterogeneity in both
phenotype and function and can be divided into two main subsets:
progenitor-exhausted T (TPEX) cells and terminally TEX. TPEX cells
possess a stem-like exhausted phenotype characterized by the
expression of PD-1, CD127, the chemokine receptor CXCR5, and
high levels of TCF-1 (encoded by Tcf7) (McLane et al., 2019). The
TCF-1 subset is pivotal for memory formation, as it possesses self-
renewal and proliferative capacities and exhibits a favorable
response to immunotherapy (Miller et al., 2019). TCF-1 serves as
a critical marker for T cell stemness (Wen et al., 2021). Compared to
TPEX cells, terminally TEX display impaired proliferative potential
and lack TCF-1 expression, rendering them unresponsive to
activation (Hudson et al., 2019; Siddiqui et al., 2019).
Additionally, these two types of TEX exhibit distinct metabolic
characteristics. TPEX cells predominantly engage in catabolic
metabolism, characterized by mitochondrial fatty acid oxidation
(FAO) and oxidative phosphorylation (OXPHOS) (Adams et al.,
2016). On the other hand, terminally TEX primarily relies on
glycolytic metabolism. However, prolonged antigen stimulation
can induce changes in mitochondrial structure, resulting in
impaired glycolysis and OXPHOS (Scharping et al., 2016;
Schurich et al., 2016). Notably, an immunotherapy trial in
lymphoma patients revealed higher levels of TPEX cells in lymph
nodes without cancer metastases (Rahim et al., 2023).

T cell stemness

The concept of T cell stemness was first recognized in 2001 when
mouse central memory T cells (TCM) were experimentally inhibited
at the pre-differentiation stage using transcriptional inhibitors,
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which resulted in the preservation of their replicative potential and
their ability to generate effector T cells over the long term upon
encountering a subsequent antigenic challenge (Fearon et al., 2001;
Crespo et al., 2013). Recent investigations have revealed that T cells
undergo a programmed sequential process involving activation
upon stimulation and differentiation into stem cell-like cells
(Gattinoni et al., 2009; Vodnala et al., 2019). Following
stimulation of the T cell receptor (TCR), naive T cells become
activated and can differentiate into effector T cells and memory
T cells. Memory T cells can be further categorized into effector
memory T cells (TEM), central memory T cells (TCM), tissue-resident
memory T cells, and stem cell memory T cells (TSCM) (Pace, 2021).
The differentiation of naive T cells into memory and effector states is
primarily influenced by the intensity of the signals they receive,
predominantly through the TCR (Vodnala et al., 2019). Studies have
indicated that once effector T cells enter the TME, they are not only
subjected to continuous antigen stimulation but also to
immunosuppression and other limiting factors, which often leads
to apoptosis after antigen clearance, with only a small fraction of
T cells (5%–10%) surviving. These survivors are referred to as
memory precursor T cells or progenitor-depleted T cells, and
they subsequently differentiate into various subtypes of memory
T cells. Consequently, reducing or altering the immunosuppressive
conditions in the TME is crucial for generating T cells with
stemness-like properties capable of long-term survival under
sustained antigen stimulation, ultimately achieving an effective
and enduring anti-tumor response (Wang et al., 2018; Li et al.,
2022). In particular, TSCM can maintain self-renewal and memory
capacity for up to 25 years (Gao et al., 2021; Li et al., 2021; Fazeli
et al., 2023). The differing lifespans of T cells in various states can be
attributed to changes in their transcription factor promoters, with
methylation imparting self-renewal ability while demethylation does
not. Furthermore, TSCM possesses telomeres that are protected from
damage (Gao et al., 2021; Wang et al., 2021; Fazeli et al., 2023).
T cells exhibiting stemness characteristics display high expression of
stemness-associated genes, including TCF-1, Il7r, and Cxcr3, while
showing low expression of the genes Ifng, Gzmb, Gzmc, and Gzmf
(Feng et al., 2022). Additionally, they exhibit elevated expression of
CD62L and CCR7, diminished expression of CD44, and the capacity
to rapidly acquire effector functions like memory cells following
TCR stimulation (Gattinoni et al., 2011).

Despite T cells with stemness characteristics exhibiting lower
secretion of IFN-γ, TNF-α, and granzyme B (GZMB), their capacity
for tumor cell destruction is diminished (Gattinoni et al., 2011).
Nevertheless, research has demonstrated that these T cells with
stemness properties possess enhanced self-renewal, sustained anti-
tumor effect and proliferative potential, along with the ability to
differentiate into various subtypes of memory cells (Gattinoni et al.,
2011; Fuertes Marraco et al., 2015). Compared to naive T cells and
effector T cells, stemness in T cells is associated with increased
mitochondrial mass and a predominant reliance on FAO and
mitochondrial OXPHOS for prolonged survival (Fox et al., 2005).
Given their enduring persistence, T cells with stemness properties
can be harnessed to enhance T cell-based immunotherapy against
tumors. Studies have indicated that T cells with stemness attributes,
as well as other memory-like T cell subsets like TPEX, exhibit longer-
lasting anti-infection and anti-tumor functions, which prove
advantageous for tumor immunotherapy (Golubovskaya and Wu,

2016; Vodnala et al., 2019; Biasco et al., 2021). Environmental
factors, particularly those within the TME, exert a pivotal
influence on the status of T cells. The TME may either enhance
or suppress T cell function, making it a potential target for
intervention. Therefore, understanding the factors within the
TME that promote T cell stemness introduces a fresh perspective
for advancing tumor immunotherapy.

Tumor microenvironment high K+

High K+ induces autophagy in T cells

Autophagy, first discovered in 1962, refers to the cellular
process where autophagosomes are formed by cells to degrade
organelles, proteins, and other components under the control of
specific genes. Ultimately lysosomes are used to break down their
own organelles and contents, facilitating cellular metabolism and
renewal (Kundu and Thompson, 2008). Autophagy serves to
prevent cellular damage and promote cell survival in response
to various stressors, such as nutrient deprivation or hypoxia (Lum
et al., 2005). One notable characteristic of the TME is the rapid
division of cancer cells, which compete for limited local resources
(Sitkovsky and Lukashev, 2005). These factors can result in
cellular apoptosis and necrosis (Richards et al., 2011).
However, cell death can also alter the extracellular
environment and lead to the release of intracellular ions.
Research has indicated that the concentration of K+ in the
interstitial fluid of tumors is higher than that in normal tissue
interstitial fluid (Zimmerli and Gallin, 1988). Elevated K+ levels
significantly reduce glycolytic intermediates and essential amino
acids in T cells, affecting nutrient uptake—a phenomenon termed
“caloric restriction” by (Vodnala et al., 2019). Nonetheless, this
reduction in nutrient availability does not diminish T cell viability
or proliferative potential; rather, it induces autophagy in T cells
(Vodnala et al., 2019). Autophagy occurs concurrently with an
increase in the methyl donor S-adenosylmethionine (SAM)
(DeVorkin et al., 2019). It was found that the increased
deposition of H3K27me3 in the high K+ situation of TME
suggest a shift towards T cell stemness (Vodnala et al., 2019).
The Kennedy pathway is the responsible for synthesizing
phosphatidylethanolamine (PE), an early initiator of
autophagosome formation and autophagy (Gibellini and Smith,
2010). The autophagy marker protein microtubule-associated
protein LC3b-I is converted to LC3b-II through conjugation
with PE. LC3b-II is a structural protein of autophagosomes,
and its expression reflects the level of autophagic activity
(Panda and Singh, 2023). Immunoblot analysis conducted
under high K+ conditions confirmed an increase in LC3b-II,
demonstrating that despite caloric restriction induced by
T cells in a high K+ environment, mitochondrial integrity and
oxygen-consuming capacity are preserved, which limits sustained
energy consumption under high K+ conditions. Moreover, a
decrease in the phosphorylation level of phosphorylation 3-
kinase (PI3K)/AKT/mammalian target of the rapamycin
(mTOR) signaling induces nutrient protection and a metabolic
state resembling functional starvation, thereby prompting
autophagy (Vodnala et al., 2019).
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High K+ on T cell activation pathways

Previous studies have demonstrated that PI3K-Akt-mTOR
signaling promotes the differentiation of CD8+ T cells into effector
T cells while concurrently inhibiting the generation of memory T cells
(Rao et al., 2010; van der Waart et al., 2014; Crompton et al., 2015; Li
et al., 2020). Elevated K+ in the TME also affects the activation process
of T cells, which inhibits the functionality of TCR-driven effector
proteins by suppressing the PI3K-Akt-mTOR pathway. Sustained
strong TCR signaling may induce T cells to become terminal T cells
and may predispose them to apoptosis. In contrast, weak TCR signals
may not be sufficient to effectively activate T cells but may prevent
T cell differentiation during immune initiation and arrest at the TSCM

stage (Wang et al., 2018). Thus, T cell activation is reduced, and the
inhibition of the TCR by high K+ occurs mainly by reducing TCR
activation-induced phosphorylation of AKT-targeted serine/
threonine residues (Vodnala et al., 2019), via a mechanism
involving serine/threonine phosphatases to regulate the activity of
Akt downstream of PI3K (Eil et al., 2016; Vodnala et al., 2019). During
increased levels of K+, the use of okadaic acid (OA), an inhibitor of the
serine/threonine phosphatase PP2A21, was found to significantly
restore T cell functions, and related analyses revealed that OA
could reverse the reduced phosphorylation of Akt and S6 induced
by elevated K+. Furthermore, disruption of the PP2A gene also
reversed T cell functionality, and high K+ inhibits TCR-induced
PI3K-Akt-mTOR phosphorylation by depending on PP2A (Eil
et al., 2016). Therefore, T cells cannot be activated, thus leading to
their stemness.

High K+ leads to T cell stemness

Elevated levels of K+ in the TME initiate functional metabolic
restrictions in T cells, prompting a starvation response andmodifying
cellular metabolism. Under high K+ conditions, it has been observed
that there is an increase in the total acetyl coenzyme A (AcCoA), but
the levels of AcCoA and its precursor citrate decrease in the cell
nucleus (Pietrocola et al., 2015). This alteration subsequently affects
gene expression (Eil et al., 2016; Vodnala et al., 2019). High K+

primarily maintains T cells in a stem-like state by influencing
TCF-1 expression (Vodnala et al., 2019). In human T lymphocytes,
K+ efflux is regulated by two K+ channels: Kv1.3 (a voltage-gated K+

channel activated by membrane depolarization) and KCa3.1 (a K+

channel activated by increased cytoplasmic Ca2+; also known as IK1 or
Gardos channel) (Srivastava et al., 2009). Additionally, it has been
observed that blocking Kv1.3 and KCa3.1 channels in the TME with
high K+ levels can inhibit T cell function, driving T cells toward a
stemness state (Feske et al., 2015).

Kir2.1, an inward rectifying potassium channel, plays a significant
role in this context. Knockout of the Kir2.1 channel in tumor-
associated macrophages (TAMs) results in elevated K+ levels and
induces a metabolic shift from OXPHOS to glycolysis (Chen et al.,
2022). The reduction in nuclear-cytoplasmic AcCoA levels and its
precursor citrate in T cells, along with the depletion of glycolytic
metabolites, indicates a preference for AcCoA production and
utilization in mitochondria for OXPHOS, aligning with the findings
in TAMs (Vodnala et al., 2019). Thus, in conditions of elevated K+, the
regulation of AcCoA influences histone acetylation and gene

expression and initiates metabolic reprogramming. Studies
have demonstrated alterations in the expression of acetyl-CoA
synthetase 1 (Acss1), primarily located in mitochondria, under
these conditions. These changes lead to metabolic
reprogramming, enhanced oxidative capacity, and increased
stem cell-like properties in T cells, suggesting that the
Acss1 pathway may serve as a potential target for enhancing
T cell stem cell-like capabilities (Vodnala et al., 2019).

Moreover, high K+ levels have been shown to inhibit the
production of key cytokines such as IFN-γ, GZMB, and IL-2 in
T cells (Vodnala et al., 2019). In CD8+ T cells exposed to high K+,
an increase in the expression of the lymphoid homing marker
CD62L and the co-stimulatory marker CD27 has been observed.
Both Tcf7 transcripts and proteins also exhibit an increase under
high K+ conditions (Vodnala et al., 2019). Amino acids, including
methionine, become depleted in T cells when exposed to elevated
K+. Consequently, the metabolites required to support relevant
aspects of T cell stemness are depleted (Vodnala et al., 2019).
However, T cells subjected to high K+ conditions possess an
enhanced capacity for recalling their response to antigens,
remain relatively undifferentiated, and demonstrate greater
persistence and self-renewal upon re-exposure to antigens
(Gattinoni et al., 2012). T cells that regain their stemness can
promptly acquire effector functions following stimulation via the
TCR (Gattinoni et al., 2011).

Tumor microenvironment high lactic

Lactic on T cell function

Tumor cells undergo metabolic changes characterized by
increased glucose uptake and a higher proportion of pyruvate
conversion to lactic acid, even in normoxic conditions, and this
phenomenon, known as aerobic glycolysis, is commonly referred to
as the Warburg effect (Warburg, 1961). Previous studies have
suggested that lactate plays a contributing role in tumor
development and is detrimental to tumor therapy, There exists a
correlation between lactate concentration in tumor tissue and the
incidence of metastasis, with higher lactate concentrations
associated with shorter survival (Walenta et al., 1997; Walenta
et al., 2000; Walenta et al., 2004). Lactate within tumors fuels
regulatory T cells and within progression of macrophages toward
an M2 phenotype (Ohashi et al., 2017; Watson et al., 2021).
Moreover, the rapid proliferation and growth of tumors can
result in hypoxic conditions (Petrova et al., 2018), leading to
energy metabolism through anaerobic glycolysis and the
accumulation of lactic acid. Interventions targeting lactic acid can
induce up to 60% cell death in cytotoxic T lymphocytes (CTLs)
(Fischer et al., 2007). Lactic acid treatment leads to a decrease in the
production of IFN-γ and IL-2 by CTL (Fischer et al., 2007), as well as
reduced content of granule enzymes and perforin in T cells and NK
cells (Fischer et al., 2007; Husain et al., 2013). The ability of lactic
acid-treated CTLs to eliminate target cells is reduced by half
compared to the control group. Elevated expression of
monocarboxylate transporter 1 (MCT-1) in CTLs from
melanoma patients suggests that lactic acid in the tumor
environment hinders T cell function (Fischer et al., 2007).

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2023.1327717

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1327717


However, T cells exposed to lactic acid exhibit a substantial
increase in the expression of genes related to T cell functional and
signaling, such as Gzmb, Ifng, and TCF-1, leading to the initiation of
changes associated with T cell stemness, ultimately enhancing the
long-term anti-tumor immune response in T cells (Feng et al., 2022).
Notably, the administration of a sodium lactate solution was found
to significantly decrease tumor growth when injected into tumor-
bearing mice. Moreover, when sodium lactate was co-administered
with either a PD-1 antibody or a tumor vaccine, synergistic anti-
tumor effects were achieved (Feng et al., 2022). Thus, while lactate
does hinder T cell function, it is plausible that T cells with stem-like
characteristics possess enduring anti-tumor capabilities and
contribute to the synergy in immune therapy. However, upon the
in vivo removal of CD8+ T cells, the anti-tumor effect resulting from
lactate intervention diminishes (Feng et al., 2022). Consequently, the
anti-tumor efficacy of sodium lactate is mediated through T cells and
is an outcome of T cell stemness.

High lactic leads to T cell stemness

Lactic acid treatment was observed to significantly enhance the
therapeutic effectiveness of anti-PD-1 treatment across various
tumor models through reduced tumor growth rates and extended
survival periods. In vitro intervention with lactic acid in T cells
demonstrated a notable elevation in the expression of the stemness

marker gene TCF-1 (Feng et al., 2022). The primary mechanism
through which elevated lactate affects T cell stemness predominantly
involves the inhibition of histone deacetylase activity in CD8+

T cells, which leads to the retention of histone acetylation at the
TCF-1 locus during the differentiation of CD8+ T cells, with a
notable 3.5-fold increase in acetylation levels at the H3K27 locus,
thereby resulting in a reduction in the apoptosis and depletion of
CD8+ T cells (Feng et al., 2022).

Tumor microenvironment high H+

High H+ on T cell metabolism

During glycolysis, tumor cells continuously transport intracellular
H+ ions to the extracellular space through ion exchange proteins on
their cell membranes, preventing self-acidosis (Chen and Pagel, 2015;
Wei et al., 2021). Acidosis is t a defining feature of solid tumors,
characterized by a pH range of 5.7–7 (Ashby, 1966; Vaupel et al., 1989).
Extracellular acidosis has the effect of enhancing the endocytosis of
dendritic cells (DCs) and influencing macrophage activity, leading to
increased expression of MHC class II and CD86 (Vermeulen et al.,
2004; Colegio et al., 2014). Under prolonged exposure to high
extracellular H+ conditions, T cells experience reduced glycolysis
and amino acid metabolism. Conversely, short-term exposure to
high H+ levels only inhibits glycolysis without significant effects on

FIGURE 1
Tumor microenvironment-induced T cell stemness. (A)High K+ levels in the tumor microenvironment promote T cell stemness. High K+ leads to an
increase in AcCoA within mitochondria while decreasing it in the nucleus, inducing autophagy and histone hypoacetylation. These alterations in gene
expression reduce T cell differentiation into effector T cells by inhibiting the TCR signaling pathway. The inhibition of TCR by high K+ primarily occurs
through reduced phosphorylation of Akt-targeted serine/threonine residues upon TCR activation. (B) Elevated lactate in the tumor
microenvironment induces T cell stemness by increasing acetylation levels at the H3K27 locus within the TCF-1 gene during CD8+ T cell differentiation.
This elevated acetylation preserves cellular stemness. (C) T cell stemness induced by high H+ levels in the tumor microenvironment. Elevated FAO results
in increased AcCoA levels, leading to TCR inhibition, reduced T cell activation, and inhibition ofmethionine synthaseMTR, thereby decreasingmethionine
synthesis. This reduction further lowers the synthesis of SAM and S-adenosylhomocysteine (SAH). SAM is a critical methyl donor for DNA and histone
methylation reactions. The decreased methylation levels, particularly the histone marker H3K27me3, enhance TCF-1 expression.
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amino acids (Cheng et al., 2023). High H+ levels severely impede
glucose entry into the tricarboxylic acid cycle in T cells while
promoting the breakdown of palmitic acid into AcCoA and citrate,
resulting in metabolic reprogramming. Consequently, high H+ levels
stimulate FAO in T cells (Cheng et al., 2023). T cells exhibit a higher
oxygen consumption rate (OCR) and spare respiratory capacity (SRC)
as characteristic trait of long-livedmemory T cells (van derWindt et al.,
2012; Cheng et al., 2023). This metabolic reprogramming mainly
induces inhibition of the PI3K -AKT-mTOR signaling pathway,
thereby inhibiting TCR activation and favoring the formation of
CD8+ T cells stemness (Pollizzi et al., 2015; Ron-Harel et al., 2016;
Cheng et al., 2023).

High H+ triggers metabolic reprogramming
of T cells

There is increasing evidence indicating that one-carbon
metabolism plays a crucial role in determining cellular fate and
influencing their functional states (Xie et al., 2023). Effector T cells
characterized by stemness exhibit heightened glycolytic activity and
rely on one-carbon metabolism. Conversely, T cell stemness is
distinguished by unique metabolic traits, including increased
FAO and SRC, which are critical for sustaining effective anti-
tumor capabilities (Cheng et al., 2023). Therefore, metabolic
reprogramming is crucial for the effective acquisition of stemness
in T cells and their long-term survival. High H+ inhibits the
expression of enzymes related to the methionine cycle (MTR,
AHCY, and BHMT) as well as genes involved in folate
metabolism (SHMT1 and SHMT2) in T cells (Cheng et al., 2023).
The expression of methionine transporter SLC7A5 on the surface of
T cells is dependent on Myc gene (c-Myc) expression (Han et al.,
2021). Elevated H+ concentrations can suppress c-Myc expression,
further diminishing the expression of SLC7A5 and impeding the
uptake of extracellular methionine by T cells, this ultimately
hampers the production of SAM (Ron-Harel et al., 2016). As a
methyl donor for histone methylation modifications, reduced levels
of SAM can lead to alterations in histone modifications within
T cells, thereby affecting gene expression. Investigations of various
tumor-infiltrating CD8+ T cell subpopulations, revealed decreased
expression of both c-Myc and SLC7A in T cell stemness.

High H+ leads to T cell stemness

Under high H+ conditions (10 mM) in vitro culture significantly
increased the expression of BACH2, CCR7, LEF1, and TCF7
expression in CD8+ T cells. Additionally, research has
demonstrated a H+ concentration-dependent effect on the
expression of CCR7 and TCF-1 expression. Under high H+

conditions, both human and murine CD8+ T cells exhibit a
substantial increase in TCF-1 expression at the protein level, a
key factor associated with stem properties. These T cell stemness
also display heightened expression of CCR7 and CD62L, along with
a notable reduction in the production of IFN-γ and tumor necrosis
TNF-α within the cells (Cheng et al., 2023). Quinn et al revealed
demonstrated that exposure to a high-lactate, low-glucose
environment induces reductive stress, ultimately resulting in

decreased glycolysis and reduced serine production in effector
and regulatory T cells (Quinn et al., 2020). High H+ levels lead
to a decrease in inhibitory histone marks H3K27 and KLFe3 at
memory-related gene loci (such as TCF7, CCR7, ID3, and LEF2) in
T cells. Treatment with high H+ treatment significantly inhibits the
expression of the methyltransferase EZH2, which governs
H3K27me3 modification, ultimately lowering intracellular levels
of H3K27me3 (Cheng et al., 2023). The decrease in H3K27me3
induced by extracellular acid treatment promotes the transcriptional
activation of stemness-related genes within T cells, ultimately
maintaining the stem-like characteristics of T cells; therefore,
T cells cultured under high H+ conditions exhibit strong anti-
tumor activity in vivo (McLane et al., 2019).

Conclusion

The adoptive transfer of tumor antigen-specific T cells has
marked a significant advancement in cancer therapy, often
resulting in the complete regression of certain malignant tumors,
which depends largely on the persistence and differentiation status
of the infused T cells. Preferably, less differentiated memory T cells
with lower levels of differentiation are chosen for adoptive T cell
transfer (ACT) due to their possession of stem cell-like attributes,
including self-renewal and multipotent properties. Thus, T cell
stemness plays a pivotal role in tumor immune surveillance and
immunotherapy.

In recent years, there has been a growing interest in preclinical
trials involving immune cells with stem cell characteristics for use in
immunotherapy. The extended lifespan and robust proliferation
potential make T cell stemness cells an ideal candidate for
immunotherapy. Stem-like T cells can originate directly from
naive lymphocytes, and notably, TPEX-phase cells are also
regarded as stem-like T cells (Wen et al., 2021).

Recent studies uncovered that the TME exerts a notable
influence on the development of T cell stemness. Despite prior
findings indicating the suppressive role of lactate and acidic
microenvironments in tumor immunity, it has been discovered
that elevated levels of K+, lactate, and H+ all can restore and
sustain T cell stemness by reshaping the metabolism within the
T cells (Figure 1). T cell stemness not only enhances the efficacy of
immunotherapy but also endures longer in vivo, leading to a more
robust anti-tumor response (Bailey et al., 2017). The primary
mechanism by which these three factors in the TME modify
T cell stemness involves metabolic reprogramming, subsequently
influencing gene expression, with a particular focus on altering TCF-
1 gene expression. TCF-1 possesses intrinsic histone deacetylase
(HDAC) activity, contributing to the maintenance of T cell stemness
by repressing genes inappropriate for the T cell lineage (e.g., Cd4,
Foxp3) (Xing et al., 2016). There is growing mounting evidence
supporting the notion that metabolic pathways determine the fate of
T cells and shape their epigenetic and functional states. Among the
three treatment approaches aimed at regulating the metabolic
reprogramming of T cells, the control of cellular energy intake or
the targeting of molecules such as AcCoA represents a novel
therapeutic strategy, to enhance resistance against T cell
exhaustion. Furthermore, this paper introduces additional
possibilities for improving tumor immunotherapy, suggesting that
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elevating K+ and lactate levels, along with increasing H+, can
augment T cell stemness and, consequently, enhance the
effectiveness of immunotherapy. Of immunotherapy.
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