417 research outputs found

    Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides

    No full text
    Thin film optical waveguides of the chalcogenide glass Ga-La-S have been deposited on substrates of CaF2 and microscope glass by the technique of pulsed laser deposition. The chalcogenide properties of photobleaching, photodoping, and photoinduced refractive index changes have been observed and preliminary experiments carried out. The refractive index and thickness of the layer were verified using a waveguide "dark mode" analysis technique

    Simultaneous determination of iron and copper in children's sera by FAAS

    Get PDF
    Predložena je nova jednostavna metoda plamene atomsko-apsorpcijske spektrometrije (FAAS), za simultano određivanje željeza i bakra u serumu djece. Ona se temelji na predobradbi uzorka u jednom koraku (deproteinizacija s 3 mol L–3 HCl u odnosu 1:1) i kalibraciji u jednom koraku sa standardom pripravljenim u 1.5 mol L–3 HCl. Tijekom optimizacije metode primijenjen je multifaktorski dizajnirani eksperiment. Preporučena metoda osigurava ispravnost, osjetljivost i preciznost usporedljivu onima referentnih metoda. Novi je pristup jednostavan i brz; on štedi i vrijeme i reagense i uzorke, pri čemu je potonje posebno važno u dječjoj dijagnostici.A new and simple flame atomic-absorption spectrometric (FAAS) method is proposed for simultaneous determination of iron and copper in children's sera. It is based on single-step sample pretreatment (deproteinization with 3 mol L–1 HCl, ratio 1:1) and single-step calibration using 1.5 mol L–1 HCl standard. During method’s optimization a short multifactorial design experiment was used. The proposed method assures accuracy, sensitivity and precision comparable to that of the reference methods. The new approach is simple and time-, labour- and serum-saving, the latter being especially important in pediatric diagnostics

    Evaluating cutpoints for the MHI-5 and MCS using the GHQ-12: a comparison of five different methods

    Get PDF
    Background The Mental Health Inventory (MHI-5) and the Mental Health Component Summary score (MCS) derived from the Short Form 36 (SF-36) instrument are well validated and reliable scales. A drawback of their construction is that neither has a clinically validated cutpoint to define a case of common mental disorder (CMD). This paper aims to produce cutpoints for the MHI-5 and MCS by comparison with the General Health Questionnaire (GHQ-12). Methods Data were analysed from wave 9 of the British Household Panel Survey (2000), providing a sample size of 14,669 individuals. Receiver Operating Characteristic (ROC) curves were used to compare the scales and define cutpoints for the MHI-5 and MCS, using the following optimisation criteria: the Youden Index, the point closest to (0,1) on the ROC curve, minimising the misclassification rate, the minimax method, and prevalence matching. Results For the MHI-5, the Youden Index and the (0,1) methods both gave a cutpoint of 76, minimising the misclassification rate gave a cutpoint of 60 and the minimax method and prevalence matching gave a cutpoint of 68. For the MCS, the Youden Index and the (0,1) methods gave cutpoints of 51.7 and 52.1 respectively, minimising the error rate gave a cutpoint of 44.8 and both the minimax method and prevalence matching gave a cutpoint of 48.9. The correlation between the MHI-5 and the MCS was 0.88. Conclusion The Youden Index and (0,1) methods are most suitable for determining a cutpoint for the MHI-5, since they are least dependent on population prevalence. The choice of method is dependent on the intended application. The MHI-5 performs remarkably well against the longer MCS

    Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis

    Get PDF
    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores-the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can be applied to any experimental problem in which multianalyte results obtained either by several analytical procedures, analysts, instruments, or laboratories need to be compared. [Figure not available: see fulltext.] © 2013 Springer-Verlag Berlin Heidelberg

    Epitaxial growth of Bi<sub>12</sub>GeO<sub>20</sub> thin film optical waveguides using excimer laser ablation

    No full text
    Thin-film optical waveguides of the photorefractive optical material bismuth germanium oxide (Bi12GeO20) have been epitaxially grown onto heated zirconia substrates by excimer laser ablative sputtering. The epitaxial nature and stoichiometry of the films were verified using x-ray diffraction analysis. Waveguide modes were observed for effective refractive indices in close agreement with theoretical predictions

    RNAstrand: reading direction of structured RNAs in multiple sequence alignments

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>Genome-wide screens for structured ncRNA genes in mammals, urochordates, and nematodes have predicted thousands of putative ncRNA genes and other structured RNA motifs. A prerequisite for their functional annotation is to determine the reading direction with high precision.</p> <p>Results</p> <p>While folding energies of an RNA and its reverse complement are similar, the differences are sufficient at least in conjunction with substitution patterns to discriminate between structured RNAs and their complements. We present here a support vector machine that reliably classifies the reading direction of a structured RNA from a multiple sequence alignment and provides a considerable improvement in classification accuracy over previous approaches.</p> <p>Software</p> <p>RNAstrand is freely available as a stand-alone tool from <url>http://www.bioinf.uni-leipzig.de/Software/RNAstrand</url> and is also included in the latest release of RNAz, a part of the Vienna RNA Package.</p

    Validating epilepsy diagnoses in routinely collected data

    Get PDF
    Purpose: Anonymised, routinely-collected healthcare data is increasingly being used for epilepsy research. We validated algorithms using general practitioner (GP) primary healthcare records to identify people with epilepsy from anonymised healthcare data within the Secure Anonymised Information Linkage (SAIL) databank in Wales, UK. Method: A reference population of 150 people with definite epilepsy and 150 people without epilepsy was ascertained from hospital records and linked to records contained within SAIL (containing GP records for 2.4 million people). We used three different algorithms, using combinations of GP epilepsy diagnosis and anti-epileptic drug (AED) prescription codes, to identify the reference population. Results: Combining diagnosis and AED prescription codes had a sensitivity of 84% (95% ci 77–90) and specificity of 98% (95–100) in identifying people with epilepsy; diagnosis codes alone had a sensitivity of 86% (80–91) and a specificity of 97% (92–99); and AED prescription codes alone achieved a sensitivity of 92% (70–83) and a specificity of 73% (65–80). Using AED codes only was more accurate in children achieving a sensitivity of 88% (75–95) and specificity of 98% (88–100). Conclusion: GP epilepsy diagnosis and AED prescription codes can be confidently used to identify people with epilepsy using anonymised healthcare records in Wales, U
    corecore